www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10p - q Formel und Scheitelpunkt
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 8-10" - p - q Formel und Scheitelpunkt
p - q Formel und Scheitelpunkt < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

p - q Formel und Scheitelpunkt: Frage
Status: (Frage) beantwortet Status 
Datum: 15:45 So 11.09.2005
Autor: Beliar

Hallo,
ich habe zu der folgenden Aufgabe ein paar Fragen.Doch erst einmal mein Rechenweg (die Aufg. ist mit der pq-Formel zu lösen)
[mm] (4x)^2 [/mm] - 10*4x +21 =0
[mm] 16x^2 [/mm] -40x +21 =0 / /16
[mm] x^2 [/mm] - [mm] \bruch{5}{2}x+ \bruch{21}{16} [/mm] =0
  D=( [mm] \bruch{p}{2})^2 [/mm] -q
D=(- [mm] \bruch{5}{4})^2 [/mm] -(+ [mm] \bruch{21}{16} [/mm]
D=  [mm] \bruch{25}{16} [/mm] -  [mm] \bruch{21}{16} [/mm]
D= [mm] \bruch{1}{4} [/mm]   > 0   also 2 Lösungen

x 1/2 = - [mm] \bruch{p}{2} \pm \wurzel{(p/2)^2-q} [/mm]
x 1/2 = -(- [mm] \bruch{5}{4} \pm \wurzel{(5/4)^2-21/16} [/mm]
x 1/2= 5/4  [mm] \pm \wurzel{1/4} [/mm]

x 1=  [mm] \bruch{5}{4} [/mm] + [mm] \bruch{1}{2} \vee [/mm]  x 2= [mm] \bruch{5}{4} [/mm]  - [mm] \bruch{1}{2} [/mm]
x 1 =  [mm] \bruch{7}{4} [/mm]  x 2 =  [mm] \bruch{3}{4} [/mm]
[mm] \IL= \{ \bruch{7}{4}/ \bruch{3}{4} \} [/mm]

dann habe ich mit Vieta die Probe gemacht war ok

Die Scheitelpunktform habe ich wie folgt gelöste:
[mm] 16x^2 [/mm] -40x +21
[mm] 16(x^2 [/mm] - [mm] \bruch{5}{2}x+ \bruch{21}{16}) [/mm]
[mm] 16(x^2 [/mm] - [mm] \bruch{5}{2}x+( \bruch{5}{4})^2 [/mm] - ( [mm] \bruch{5}{4})^2 [/mm] + [mm] \bruch{21}{16} [/mm]
16((x- [mm] \bruch{5}{4})^2 [/mm] - [mm] \bruch{1}{4}) [/mm]
Ps = [mm] \{ \bruch{5}{4}/-4 \} [/mm]

Und jetzt die Fragen, ist der Rechenweg in mathematischer Schreibweise korrekt?
Zur Scheitelpunktform, der x-Wert in der inneren Klammer (der die Gl. zu null werden lässt ) ist der x-Wert des Ps? und die 16 * [mm] -\bruch \{1}{4} [/mm] ergeben den y-Wert von Ps?
Danke für jede Antwort
Beliar

        
Bezug
p - q Formel und Scheitelpunkt: Richtig!
Status: (Antwort) fertig Status 
Datum: 16:30 So 11.09.2005
Autor: Mathehelfer

Hallo!
Ich habe deine Ergebnisse nachgerechnet. Alle sind ok. Nur bei der Scheitelpunktform kannst du 1/4 ausklammern, dann steht da:
[mm]16({x-{{5}\over{4}})}^{2}}-4[/mm]
Und wie du auf dem Bild siehst, stimmt es:
[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]