www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenparallelogramm/Pyramide
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Vektoren" - parallelogramm/Pyramide
parallelogramm/Pyramide < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

parallelogramm/Pyramide: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:25 Sa 24.06.2006
Autor: sumsi

Aufgabe
über ein parallelogramm A(x/y/z) B(3/4/4/) C(1/6/5) D(-2/1/7) wird eine pyramide erichtet. Fußpunkt der Pyramidenhöhe ist der Diagonalschnittpunkt des Parallelogramms, wobei die Höhe h=13. [mm] \wurzel{2} [/mm] beträgt.
ges: Spitze S und Volumen.

ich habe nun versucht den Punkt A auszurechnen (ich glaub der ist falsch) und hab rausbekommen A(4/-1/8)
danach mich Kreuzprodukt ACxBD den normalvektor und wollte dann AB mit BD schneiden.... eht aber nicht! HILFE!!!

Vielen DANk

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
parallelogramm/Pyramide: Antwort
Status: (Antwort) fertig Status 
Datum: 11:17 Sa 24.06.2006
Autor: Zwerglein

Hi, sumsi,

> über ein parallelogramm A(x/y/z) B(3/4/4/) C(1/6/5)
> D(-2/1/7) wird eine pyramide erichtet. Fußpunkt der
> Pyramidenhöhe ist der Diagonalschnittpunkt des
> Parallelogramms, wobei die Höhe h=13. [mm]\wurzel{2}[/mm] beträgt.
>  ges: Spitze S und Volumen.
>  
> ich habe nun versucht den Punkt A auszurechnen (ich glaub
> der ist falsch) und hab rausbekommen A(4/-1/8)

Der ist falsch, aber der ist auch gar nicht verlangt: Wozu ihn also berechnen?!

Du findest den Schnittpunkt der Diagonalen (S) als Mittelpunkt von BD.
Hier errichtest Du nun das Lot; genauer: Du berechnest den Normalenvektor zur Parallelogrammebene (da kannst Du [mm] \overrightarrow{BC}x\overrightarrow{BD} [/mm] nehmen!) und suchst mit dessen Hilfe den Punkt (bzw. die Punkte! Es gibt nämlich 2 Lösungen!) S.

Naja, und das Volumen berechnest Du als: V = 1/3*Grundfläche*Höhe,
wobei die Grundfläche einfach der Länge des oben berechneten Normalenvektors entspricht!

mfG!
Zwerglein

Bezug
                
Bezug
parallelogramm/Pyramide: Sicher?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:41 Sa 24.06.2006
Autor: M.Rex


> Hi, sumsi,
>  
> > über ein parallelogramm A(x/y/z) B(3/4/4/) C(1/6/5)
> > D(-2/1/7) wird eine pyramide erichtet. Fußpunkt der
> > Pyramidenhöhe ist der Diagonalschnittpunkt des
> > Parallelogramms, wobei die Höhe h=13. [mm]\wurzel{2}[/mm] beträgt.
>  >  ges: Spitze S und Volumen.
>  >  
> > ich habe nun versucht den Punkt A auszurechnen (ich glaub
> > der ist falsch) und hab rausbekommen A(4/-1/8)
>  
> Der ist falsch, aber der ist auch gar nicht verlangt: Wozu
> ihn also berechnen?!
>  
> Du findest den Schnittpunkt der Diagonalen (S) als
> Mittelpunkt von BD.
>  Hier errichtest Du nun das Lot; genauer: Du berechnest den
> Normalenvektor zur Parallelogrammebene (da kannst Du
> [mm]\overrightarrow{BC}x\overrightarrow{BD}[/mm] nehmen!) und suchst
> mit dessen Hilfe den Punkt (bzw. die Punkte! Es gibt
> nämlich 2 Lösungen!) S.
>  
> Naja, und das Volumen berechnest Du als: V =
> 1/3*Grundfläche*Höhe,
>  wobei die Grundfläche einfach der Länge des oben
> berechneten Normalenvektors entspricht!
>  

Sicher? Die Länge eines Vektors kann doch keine Fläche sein. Ich schätze, du meinst die Höhe ist die Länge des Normalenvektors.
Die Grundfläche musst du mit Hilfe der Flächenformel für ein Parallelogramm ausrechnen.


Alles andere ist aber korrekt

> mfG!
>  Zwerglein  

Marius

Bezug
                        
Bezug
parallelogramm/Pyramide: Sicher!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:59 Sa 24.06.2006
Autor: Zwerglein

Hi, M.Rex,

laut DEFINITION des Kreuzproduktes gilt:

Die Länge des Vektors [mm] \vec{c} [/mm] = [mm] \vec{a} [/mm] x [mm] \vec{b} [/mm]
ist gleich der Maßzahl des Flächeninhaltes des Parallelogramms,
das von den Vektoren [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] aufgespannt wird.

Siehe dazu auch:
[]http://de.wikipedia.org/wiki/Vektorprodukt

mfG!
Zwerglein

Bezug
                                
Bezug
parallelogramm/Pyramide: Hast mich überredet
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:45 Di 27.06.2006
Autor: M.Rex

Hast mich überredet,

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]