www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisparameterabhängig
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - parameterabhängig
parameterabhängig < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

parameterabhängig: Was bedeutet das?
Status: (Frage) beantwortet Status 
Datum: 12:06 Mi 15.12.2004
Autor: Bastiane

Hallo!

Hier nur ne ganz kurze Frage:
Was bedeutet parameterabhängig?

Wir haben den Stetigkeitssatz für parameterabhängige Lebesgue-Integrale gehabt. Zuerst dachte ich, dass es einfach bedeutet, dass man mehr als eine Variable hat, über die man integriert, aber ich glaube, das stimmt nicht ganz.
Vielleicht irgendwie, dass die eine Variable von der anderen abhängt oder so?
Wär toll, wenn das jemand wüsste (das weiß bestimmt jemand! :-)) und mir kurz erklären könnte.

Viele Grüße
Christiane
[banane]

        
Bezug
parameterabhängig: Antwort
Status: (Antwort) fertig Status 
Datum: 13:30 Mi 15.12.2004
Autor: Paulus

Liebe Christiane

ich weiss gar nicht, wo da eine saubere Definition zu finden ist, deshalb gebe ich dir einfach mal an, was ich unter einem Parameter verstehe, auch auf die Gefahr hin, dass ich jetzt 3'800-fach ausgelacht werde. Damit muss man leben! ;-)

Für mich ist ein Parameter eine Konstante, die noch festzulegen ist.

Das ist unverständlich, ich weiss, und ruft nach einem erklärenden Beispiel.

Ich untersuche die Funktion

[mm] $y=ax^2+5x$ [/mm]

und will nur wissen, wo sie ihr Minimum hat.

Das ist eine Parabel, die aber je nach eingesetztem Wert für $a_$ eine etwas andere Form hat. (Nach oben geöffnet, nach unten geöffnet, flacher oder enger, für $a=0_$ sogar zu einer Geraden entartet). Die Form des Grafen ist also offensichtlich parameterabhängig.

Die Existenz des Minimums ist jetzt aber auch vom Parameter $a_$ abhängig. Die 2. Ableitung muss ja positiv sein.

$y'=2ax+5_$
$y''=2a$

Damit die Funktion überhaupt ein Minimum annimmt, muss also $a_$ positiv sein.

Und wo liegt das Minimum?

Natürlich bei [mm] $x_0 [/mm] = [mm] \bruch{-5}{2a}$ [/mm]

Das ist somit auch von $a_$ abhängig, nach meinem Begriff also parameterabhängig.

Du siehst also: das $a_$ ist nicht eine 2. Variable, sondern eine Konstante, die noch festzulegen ist.
Mit Hilfe der Parameter kann man aber eine ganze Funktionenschar auf einen Schlag untersuchen.

Hier hätte man übrigens die Funktion wohl so definiert:

[mm] $f_a(x)=ax^2+5x$ [/mm]

Passt das einigermassen in deinen Zusammenhang?

Mit lieben Grüssen

Paul


Bezug
                
Bezug
parameterabhängig: Danke. :-)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:55 Mi 15.12.2004
Autor: Bastiane

Hallo Paul!
Die Erklärung ist sehr schön und passt so halbwegs. Wir hatten eine [mm] Funktionf:A\times B\to\IR [/mm] und hatten dann als eine Voraussetzung:
[mm] \forall y\in [/mm] B ist x [mm] \mapsto [/mm] f(x,y) stetig in a
Das hieße dann wahrscheinlich, dass das y der Parameter ist, oder?

Aber ich denke, das haut schon hin, auch ohne exakte Definition. ;-)

Übrigens soll ich dir von meiner "Medizin-Freundin" ganz doll für's Daumendrücken danken - die Klausur war sehr gut! :-)

Viele Grüße
Christiane
[cap]

Bezug
                        
Bezug
parameterabhängig: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:27 Mi 15.12.2004
Autor: Paulus

Liebe Christiane

> Hallo Paul!
>  Die Erklärung ist sehr schön und passt so halbwegs. Wir
> hatten eine Funktion [mm]f: A\times B\to\IR[/mm] und hatten dann als
> eine Voraussetzung:
>  [mm]\forall y\in[/mm] B ist x [mm]\mapsto[/mm] f(x,y) stetig in a
>  Das hieße dann wahrscheinlich, dass das y der Parameter
> ist, oder?
>  

Ja, das sehe ich auch so. Die Funktionsdefinition bestätigt das ja auch:
$x [mm] \mapsto [/mm] f(x,y)$

Da wird also nur dem $x_$ etwas zugeordnet, sonst würde es ja heissen:
$(x,y) [mm] \mapsto [/mm] f(x,y)$

Aber eben, dieses $f_$ selber ist noch von $y_$ abhängig. Man hätte also auch, gemäss meiner Bemerkung, so schreiben können:

$x [mm] \mapsto f_y(x)$ [/mm]

>  
> Übrigens soll ich dir von meiner "Medizin-Freundin" ganz
> doll für's Daumendrücken danken - die Klausur war sehr gut!
> :-)
>  

Danke, das freut mich! :-)

Liebe Grüsse

Paul

Bezug
        
Bezug
parameterabhängig: Antwort
Status: (Antwort) fertig Status 
Datum: 13:58 Mi 15.12.2004
Autor: Stefan

Liebe Christiane!

Wenn ich das weiter ausführen darf:

Ein parameterabhängiges Integral ist ein Integral der Form

[mm] $\int\limits_C f(x,y)\, [/mm] dy$.

Wir haben also für jedes $x$ ein anderes Integral. Somit ist hier $x$ ein Parameter, im Sinne von Pauls Definition. Man muss diesen Parameter sozusagen näher festlegen. Ich bekomme also für jeden festen Parameter $x$ ein anderes Integral, also sozusagen eine Familie von Integralen.

Da das Integral also von $x$ abhängt, kann man schreiben:

$F(x) = [mm] \int\limits_C f(x,y)\, [/mm] dy$.

Es stellen sich jetzt allerhand Fragen:

1) Wenn $f$ stetig ist, ist dann auch $F$ stetig?

2) Wenn $f$ differenzierbar ist, ist dann auch $F$ differenzierbar?

3) Nehmen wir mal an $F$ sei differenzierbar. Darf ich, um $F$ zu differenzieren, erst $f$ differenzieren und dann integrieren, also Integration und Differentiation vertauschen? Darf ich also schreiben:

$F'(x) = [mm] \int\limits_C \frac{\partial}{\partial x}f(x,y)\, [/mm] dy$?

Das sind alles nicht-triviale Fragen, die ihr jetzt in der Vorlesung behandeln werdet. Du solltest dir aber immer klar machen, dass man nichts anderes wissen will als die Antworten zu den obigen drei Fragen. Und die Voraussetzungen, die man in den Sätzen dann braucht, sehen furchtbar kompliziert aus. Aber sie sind häufig erfüllt, gerade wenn man über kompakte Mengen (z.B. beschränkte, abgeschlossene Intervalle in [mm] $\IR$) [/mm] integriert.

Liebe Grüße
Stefan

Bezug
                
Bezug
parameterabhängig: Danke.
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:52 Mi 15.12.2004
Autor: Bastiane

Hallo Stefan!

Danke für die Erklärung. Hab's mir direkt ausgedruckt und werde es zu den Vorlesungssachen tun, damit es nicht verlorengeht. ;-)

Viele Grüße
Christiane
[cap]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]