www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und Ebenenparameterdarstellung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Geraden und Ebenen" - parameterdarstellung
parameterdarstellung < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

parameterdarstellung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:14 Di 22.01.2008
Autor: lai

Aufgabe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.was ist die genaue anwendung von parametersdarstellungen von geraden aber auch von kurven?
wieso gibt es parameterdarstellungen?Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
parameterdarstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:32 Di 22.01.2008
Autor: Event_Horizon

Hallo!

Ich weiß nicht so genau, worauf du hinaus willst. Aber hier ist eine erklärung:


Wenn du auf einer Seekarte die Bewegungen von Schiffen einzeichnest, ziehst du normalerweise Graden oder auch Kurven auf der Karte. Die geben dann alle Punkte wieder, an denen sich das Schiff irgendwann befindet, aber du weißt nicht genau, wo.

Ganz naiv würde man dann sagen, man gibt einen Startpunkt an, wo das Schiff zu einem bestimmten Zeitpunkt t=0 ist. Um dann die Position zu bestimmen, rechnet man einfach s=v*t, also die zurückgelegte Strecke nach einer bestimmten Zeit. Das ganze gerne auch vektoriell, um das in die 2D-Karte einzutragen. Und damit hast du bereits eine Parameterdarstellung, wie sie recht häufig benutzt wird:

[mm] \vec{s}(t)=\vec{s}_0+\vec{v}*t [/mm]

hast du zwei Schiffe, deren Kurs sich kreuzt, kannst du darüber herausfinden, ob die beiden Schiffe zur gleichen Zeit am gleichen Ort sind, denn das wäre ja fatal.


Das ganze funktioniert nicht nur mit Graden, sondern mit allen möglichen Kurven.

Man kann also über so einen Parameter noch eine weitere Größe ins Spiel bringen, die alleine an Hand der Koordinaten in deinem Diagramm nicht erkennbar ist.


Parameterdarstellungen können der normalen y=f(x)-Darstellung auch überlegen sein: y=f(x) ordnet einem x GENAU EIN y-Wert zu. Du kannst damit also nur Kurven zeichnen, die links anfangen, rechts aufhören, und sich immer nur von links nach rechts bewegen. Kreise oder Spiralen kannst du so niemals darstellen. Mit nem Parameter geht das aber:

[mm] \vektor{\cos t \\ \sin t} [/mm] ist ein Kreis

[mm] \vektor{t*\cos t \\ t*\sin t} [/mm] ist eine Spirale.


Zugegeben, sowas wie ne Geschwindigkeit siehst du in diesem Beispiel nicht direkt, aber auch hier werden die xy-Werte von außen, durch den Parameter t bestimmt.


Und: Eine Kurve in 3D kannst du nicht anders als in Parameterform darstellen, es sei denn, du gibst mehrere Formeln an (z.B. zwei Ebenen, deren Schnittmenge gemeint sein soll)




Bezug
                
Bezug
parameterdarstellung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:49 Di 22.01.2008
Autor: lai

erstmals vielen dank hat mir schon sehr weitergeholfen;
nur noch zusammenfassend wollte ich fragen:
die vorteile einer Parameterdarstellung sind also eine dritte Kenngröße direkt in der Gleichung, und schnelles Finden neuer Punkte auf der Geraden oder Kurve?!



Bezug
                        
Bezug
parameterdarstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:26 Di 22.01.2008
Autor: informix

Hallo lai und [willkommenmr],

> erstmals vielen dank hat mir schon sehr weitergeholfen;
>  nur noch zusammenfassend wollte ich fragen:
> die vorteile einer Parameterdarstellung sind also eine
> dritte Kenngröße direkt in der Gleichung, und schnelles
> Finden neuer Punkte auf der Geraden oder Kurve?!
>

ich weiß nicht, welche "dritte Kenngröße" du meinst.

Der Vorteil der Parameterdarstellung liegt für mich darin, dass es eine sehr "natürliche" Darstellung ist:
die Gerade geht durch den Punkt A und hat die Richtung [mm] \vec{v}: [/mm] daher gilt: [mm] \vec{x}=\vec{a}+\lamda\vec{v} [/mm]
Damit kann man sehr schnell weitere Punkte bestimmen oder profen, ob ein Punkt auf der Geraden liegt (Punktprobe).


Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]