www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichenpartielle Diff Problem
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - partielle Diff Problem
partielle Diff Problem < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

partielle Diff Problem: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:51 Sa 02.03.2013
Autor: Coup

Aufgabe
Leiten sie partiell ab und bestimmen Sie lokale Extrema :
$( ( x [mm] -1)^2 [/mm] +y ) ^2 +2$

Hallo,
dies war eine Klausuraufgabe mit der ich nicht umgehen konnte.
Ich weis zwar das ich hier die Kettenregel anwenden muss aber nicht wie ich das ganze partiell formuliere.

Kann ich bei der Ableitung nach x, also fx das y außer Acht  
lassen und [mm] (x-1)^4 [/mm] ableiten ?
Das wäre ja [mm] 4(x-1)^3 [/mm]

lg
Micha

        
Bezug
partielle Diff Problem: Antwort
Status: (Antwort) fertig Status 
Datum: 19:57 Sa 02.03.2013
Autor: notinX

Hallo,

> Leiten sie partiell ab und bestimmen Sie lokale Extrema :
>  [mm]( ( x -1)^2 +y ) ^2 +2[/mm]
>  Hallo,
>  dies war eine Klausuraufgabe mit der ich nicht umgehen
> konnte.
>  Ich weis zwar das ich hier die Kettenregel anwenden muss
> aber nicht wie ich das ganze partiell formuliere.
>  
> Kann ich bei der Ableitung nach x, also fx das y außer
> Acht  

richtig, Du musst y bei der partiellen Ableitung nach x nicht weiter beachten.

> lassen und [mm](x-1)^4[/mm] ableiten ?

Das heißt aber nicht, dass Du y=0 setzen darfst! Behandle y bei der Ableitung nach x wie eine Konstante - und umgekehrt.

>  Das wäre ja [mm]4(x-1)^3[/mm]
>
> lg
>  Micha

Gruß,

notinX

Bezug
                
Bezug
partielle Diff Problem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:07 Sa 02.03.2013
Autor: Coup

Meinst du denn in etwa so ?
fx= [mm] 4(x-1)^3 +y^2 [/mm] ?





Bezug
                        
Bezug
partielle Diff Problem: Antwort
Status: (Antwort) fertig Status 
Datum: 20:19 Sa 02.03.2013
Autor: MathePower

Hallo Coup,

> Meinst du denn in etwa so ?
>  fx= [mm]4(x-1)^3 +y^2[/mm] ?
>  


Nein. Das ist auch nicht richtig.


Gruss
MathePower

Bezug
                        
Bezug
partielle Diff Problem: Kettenregel
Status: (Antwort) fertig Status 
Datum: 20:31 Sa 02.03.2013
Autor: Loddar

Hallo Coup!


Dass Deine partielle Ableitung nicht stimmt, wurde Dir ja bereits verraten.

Du musst die MBKettenregel anwenden. Wenn Du damit noch unsicher bist, kannst Du vor dem Ableiten auch erst die Klammern ausmultiplizieren.


Gruß
Loddar


Bezug
                                
Bezug
partielle Diff Problem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:28 Sa 02.03.2013
Autor: Coup

[mm] ((x-1)^2+y)^2 [/mm] +2
Also es heißt ja kurz formuliert Äußere x Innere Abl.

somit ergibt sich
fx = 2 [mm] ((x-1)^2 [/mm] +y  ) * [mm] (x-1)^2+y [/mm]
Hier müssen die Innereien noch abgeleitet werden.
    = [mm] 2((x-1)^2 [/mm] + y) * 2(x-1)
    = [mm] 4((x-1)^2 [/mm] +y) * (x-1)

fy =2 [mm] ((x-1)^2 [/mm] +y  ) * 1

gruß und danke schonmal

Bezug
                                        
Bezug
partielle Diff Problem: Antwort
Status: (Antwort) fertig Status 
Datum: 22:32 Sa 02.03.2013
Autor: reverend

Hallo Coup,

> [mm]((x-1)^2+y)^2[/mm] +2
>  Also es heißt ja kurz formuliert Äußere x Innere Abl.

Ja, das ist eine gute Merkregel.

> somit ergibt sich
> fx = 2 [mm]((x-1)^2[/mm] +y  ) * [mm](x-1)^2+y[/mm]
>   Hier müssen die Innereien noch abgeleitet werden.

Genau deswegen würde ich es so nicht aufschreiben, ...

>      = [mm]2((x-1)^2[/mm] + y) * 2(x-1)
>      = [mm]4((x-1)^2[/mm] +y) * (x-1)

... sondern gleich so. Das ist übrigens auch richtig!

> fy =2 [mm]((x-1)^2[/mm] +y  ) * 1

Das ist auch korrekt.

Grüße
reverend


Bezug
                                        
Bezug
partielle Diff Problem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:18 Sa 02.03.2013
Autor: steppenhahn


> fx = 2 [mm]((x-1)^2[/mm] +y  ) * [mm](x-1)^2+y[/mm]
>   Hier müssen die Innereien noch abgeleitet werden.

^^




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]