www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungpartielle Integration
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - partielle Integration
partielle Integration < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:04 Do 26.05.2011
Autor: Steffi2012

Aufgabe
Ermittle eine Stammfunktion F zu f.
j) $f(x) = [mm] \bruch{x}{2} \wurzel{8-x} [/mm]

Huhu Leute,
hier hat sich mal wieder ein Fehler eingeschlichen, allerdings kann ich ihn nicht finden!

$u(x) = [mm] \bruch{x}{2} [/mm] => u'(x) = [mm] \bruch{1}{2}$ [/mm]

$v'(x) =  [mm] \wurzel{8-x} [/mm] => v(x) = [mm] \bruch{2}{3}(8-x)^{\bruch{3}{2}}$ [/mm]

folglich:

$F(x) = [mm] \bruch{2}{3}(8-x)^{\bruch{3}{2}}*\bruch{x}{2} [/mm] - [mm] \integral \bruch{2}{3}(8-x)^{\bruch{3}{2}} \bruch{1}{2} [/mm] = [mm] \bruch{x}{3}(8-x)^{\bruch{3}{2}} [/mm] - [mm] \bruch{2}{15}(8-x)^{\bruch{5}{2}}$ [/mm]

Hmm, where's the mistake?

Vielen Dank!

        
Bezug
partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 22:22 Do 26.05.2011
Autor: ONeill

Hi!

> [mm]v'(x) = \wurzel{8-x} => v(x) = \bruch{2}{3}(8-x)^{\bruch{3}{2}}[/mm]

[notok]
Leite das mal wieder ab und schau ob Du auf das selbe Ergebnis kommst ;-)

Gruß Christian

Bezug
                
Bezug
partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:29 Do 26.05.2011
Autor: Steffi2012

Hmm, erkenne den Fehler nicht.

[mm] $\wurzel{8-x} [/mm] = [mm] (8-x)^\bruch{1}{2}$ [/mm] oder nicht? Dann müsste die Aufleitung, also v(x), richtig sein, oder nicht?

Da abgeleitet, dann:
[mm] $1(8-x)^{\bruch{1}{2}}$ [/mm]

Oder nicht??
--------------------------------------------
Edit: Okay, ich verstehe. Man muss die Kettenregel anwenden und kommt dann auf [mm] $-\wurzel{8-x}$! [/mm] Wäre aber wohl nie darauf gekommen, dass die Aufleitung falsch wäre, da ich die Kettenregel nicht angewandt hätte!


Bezug
                        
Bezug
partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 23:13 Do 26.05.2011
Autor: Gonozal_IX

Huhu,

>  Edit: Okay, ich verstehe. Man muss die Kettenregel
> anwenden und kommt dann auf [mm]-\wurzel{8-x}[/mm]!

[ok]

> Wäre aber wohl
> nie darauf gekommen, dass die Aufleitung falsch wäre, da
> ich die Kettenregel nicht angewandt hätte!

Tu uns allen bitte einen Gefallen und nenne es nicht "aufleiten" oder "Aufleitung". Diese Begriffe gibt es in der Mathematik nicht!
Es heisst "integrieren" und "Stammfunktion".  

Liebe Grüße,
Gono.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]