www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichenpartiellen Ableitungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - partiellen Ableitungen
partiellen Ableitungen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

partiellen Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:40 Mi 12.07.2006
Autor: Anjali_20

Aufgabe
Sei f(x,y) = x²y³+yln(x) . Berechnen Sie die partiellen Ableitungen sowie die totale Ableitung.
2) Sei [mm] f(x,y,z)=e^x+2y [/mm] + 2xsin(z) + z²xy. Berechnen Sie die totale Ableitung sowie die Gleichung der Tangentialebene.

hallo ihre Mathe Begabten

Könnte ihr mir bitte Hilfe? Vielleicht eine Idee geben wie ich das machen soll? so ansatz idee??



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
partiellen Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:31 Mi 12.07.2006
Autor: Event_Horizon

Die partielle Ableitung nach x ist einfach die Ableitung nach x, wobei y als Konstante angesehen wird. Gleiches gilt auch für die part. Ableitungen nach y oder z.

Die Totale Ableitung ist für skalare Funktionen wie hier einfach der Gradient:

[mm] $\vektor{\bruch{d}{dx}f \\ \bruch{d}{dy}f \\ \bruch{d}{dz}f}$ [/mm]

Zur Tangentenebene:

Nun, du betrachtest die Funktion an einem Punkt [mm] $(x_0,y_0,z_0)$, [/mm] das kannst du also als Aufpunktvektor für die Ebene auffassen.
Nun, der o.g. Gradient ist ein Vektor, der dir sagt, in welche Richtung du dich bewegen mußt, damit sich die Funktion ändert. Dieser Vektor steht senkrecht auf der oberfläche, entlang derer die Funktion konstant ist.

Vielleicht kennst du das aus der Physik / Elektrostatik: Die Kraftlinien zwischen zwei geladenen Körpern stehen senkrecht auf den Äquipotentiallinien.

Wie dem auch sei, der o.g. Vektor steht auch senkrecht auf deiner Tangentialebene. Was liegt also näher, als aus ihm und aus [mm] (x_0,y_0,z_0) [/mm] die Normalenform zu basteln:

[mm] $\left( \vektor{x \\ y \\ z}-\vektor{x_0 \\ y_0 \\ z_0}\right)*\vektor{\bruch{d}{dx}f(x_0,y_0,z_0) \\ \bruch{d}{dy}f(x_0,y_0,z_0) \\ \bruch{d}{dz}f(x_0,y_0,z_0)}=0$ [/mm]
Durch Ausmultiplizieren erhälst dudann auch eine Koordinatengleichung für die Ebenen.

Bezug
                
Bezug
partiellen Ableitungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:50 Mi 12.07.2006
Autor: Anjali_20

Danke Sehr hat mir echt geholfen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]