www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungenpartikul. Lsg. für Dgl.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - partikul. Lsg. für Dgl.
partikul. Lsg. für Dgl. < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

partikul. Lsg. für Dgl.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:26 So 29.01.2006
Autor: mathe_lerner

Aufgabe
Allg. Lsg. der Dgl ist gesucht:

y''-y=x*sinx

Hallo zusammen,

die hom. Lsg lautet:

[mm] C_{1}*e^x+C_{2}*e^{-x} [/mm]

ich habe hier aber Problem mit dem Ansatz für eine partikuläre Lösung:

der sinx-teil wird zu A*sinx+B*cosx

mit dem x-teil bin ich überfordert, da es sich hierbei ja um eine Multiplikation und nicht eine Addition handelt

Sonst wird x zu: Cx+D

Aber beide teile einfach zu multiplizieren ist ja nicht so einfach erlaubt.

Hoffe, es hat jemand mein Problem verstanden und kann mir helfen!

        
Bezug
partikul. Lsg. für Dgl.: partikuläre Lösung
Status: (Antwort) fertig Status 
Datum: 13:31 So 29.01.2006
Autor: Loddar

Hallo mathe-lerner!


Verwende als Ansatz für die partikuläre Lösung:

[mm] $y_P [/mm] \ = \ [mm] A*x*\sin(x) [/mm] + [mm] B*x*\cos(x) [/mm] + [mm] C*\sin(x)+D*\cos(x)$ [/mm]


Gruß
Loddar


Bezug
                
Bezug
partikul. Lsg. für Dgl.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:55 So 29.01.2006
Autor: mathe_lerner


>
> Verwende als Ansatz für die partikuläre Lösung:
>  
> [mm]y_P \ = \ A*x*\sin(x) + B*x*\cos(x) + C*\sin(x)+D*\cos(x)[/mm]
>  


Ahja: Wenn ich das richtig verstanden habe ist [mm] C*\sin(x)+D*\cos(x) [/mm] der sinus-anteil und x-Anteil wird einfach mit dem sinus-anteil multipliziert, woraus dann  [mm] A*x*\sin(x) [/mm] + [mm] B*x*\cos(x) [/mm] enststeht.

Bezug
                        
Bezug
partikul. Lsg. für Dgl.: nicht ganz ...
Status: (Antwort) fertig Status 
Datum: 14:13 So 29.01.2006
Autor: Loddar

Hallo mathelerner!

> Ahja: Wenn ich das richtig verstanden habe ist
> [mm]C*\sin(x)+D*\cos(x)[/mm] der sinus-anteil und x-Anteil wird
> einfach mit dem sinus-anteil multipliziert, woraus dann  
> [mm]A*x*\sin(x)[/mm] + [mm]B*x*\cos(x)[/mm] enststeht.

Nicht ganz! Durch die die faktorisierte Form der Inhomogenität [mm] $x*\sin(x)$ [/mm] wird auch die partikuläre Lösung mit [mm] $A*x*\sin(x)+B*x*\cos(x)$ [/mm] vorgegeben. Beim Ableiten dieser Terme entstehen aber auch reine trigonometrische Funktionen (MBProduktregel), die durch [mm] $C*\sin(x)+D*\cos(x)$ [/mm] berücksichtigt werden.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]