poissonverteilte ZV < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:01 Mo 03.06.2013 | Autor: | clemenum |
Aufgabe | Es seien $X,Y$ zwei poissonverteilte unabhängige Zufallsvariablen mit Parametern [mm] $\lambda, \mu.$ [/mm] Welche Verteilung hat nun $X+ Y $ ? |
Nun, beide Zufallsvariablen sind ja eigentlich Funktionen mit Werten, die durch $f(k; [mm] \lambda) [/mm] = [mm] \frac{ \lambda ^k e^{-\lambda }} [/mm] {k!}$ bzw.
$g(k; [mm] \mu) [/mm] = [mm] \frac{ \mu^k e^{-\mu}} [/mm] {k!}$ beschrieben werden.
Ich vermute, dass man nun die beiden Funktionen $f,g$ addieren muss um die Verteilung von $X+Y$ zu erhalten. Ich muss ja zeigen: $f + g = [mm] \frac{(\lambda + \mu)^k e^{ - \lambda - \mu }}{k!}. [/mm] $ Ich habe aber leider keine Idee, wie ich hier die Unabhängigkeit der Zufallsvariablen einpacken kann und bitte hier um einen Tipp.
|
|
|
|
Hallo clemenum,
> Es seien [mm]X,Y[/mm] zwei poissonverteilte unabhängige
> Zufallsvariablen mit Parametern [mm]\lambda, \mu.[/mm] Welche
> Verteilung hat nun [mm]X+ Y[/mm] ?
>
>
> Nun, beide Zufallsvariablen sind ja eigentlich Funktionen
> mit Werten, die durch [mm]f(k; \lambda) = \frac{ \lambda ^k e^{-\lambda }} {k!}[/mm]
> bzw.
> [mm]g(k; \mu) = \frac{ \mu^k e^{-\mu}} {k!}[/mm] beschrieben
> werden.
>
> Ich vermute, dass man nun die beiden Funktionen [mm]f,g[/mm]
> addieren muss um die Verteilung von [mm]X+Y[/mm] zu erhalten. Ich
> muss ja zeigen: [mm]f + g = \frac{(\lambda + \mu)^k e^{ - \lambda - \mu }}{k!}.[/mm]
> Ich habe aber leider keine Idee, wie ich hier die
> Unabhängigkeit der Zufallsvariablen einpacken kann und
> bitte hier um einen Tipp.
Was du hier brauchst, ist die Faltung zweier ZVen.
[mm]P(X+Y=k) \ = \ \sum\limits_{n=0}^kP(X=n)\cdot{}P(Y=k-n) \ = \ \ldots[/mm]
Einsetzen und ausrechnen, du weißt ja schon, was rauskommen muss ...
Gruß
schachuzipus
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:31 Mo 03.06.2013 | Autor: | clemenum |
Super, danke für deinen hilfreichen Hinweis, Schachuzipus; damit komm ich nun sicher allein klar!
|
|
|
|