www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-Analysispolynomdivision
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - polynomdivision
polynomdivision < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

polynomdivision: divisor 3 elemente
Status: (Frage) beantwortet Status 
Datum: 19:39 Mi 25.01.2006
Autor: daniel13

Aufgabe
[mm] (x^4-5x^3-9,25x^2-13x+17,75):(x^2-5x+6,25)=x^2+3+((2x-1):x^2-5x+6,25) [/mm]

hallo

suche nach einem rechenweg für diese polynomdivision. wenn ich die aufgabe  analog einer polynomdivision mit divisor mit 2 elementen durchführ wär ja das ergebnis: [mm] x^2-15,5... [/mm] gibts bei 3 fachen divisor was besonderes zu beachten? im voraus schonmal besten dank.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
polynomdivision: Antwort
Status: (Antwort) fertig Status 
Datum: 19:54 Mi 25.01.2006
Autor: Lolli


>
> [mm](x^4-5x^3-9,25x^2-13x+17,75):(x^2-5x+6,25)=x^2+3+((2x-1):x^2-5x+6,25)[/mm]
>  hallo
>  
> suche nach einem rechenweg für diese polynomdivision. wenn
> ich die aufgabe  analog einer polynomdivision mit divisor
> mit 2 elementen durchführ wär ja das ergebnis: [mm]x^2-15,5...[/mm]
> gibts bei 3 fachen divisor was besonderes zu beachten?

Das Verfahren verläuft wie bei der polynomdivision mit 2 Elementen im Divisor; Suche nach dem Element mit der höchsten Potenz im Divisor (hier [mm] x^{2}) [/mm] und dann schauen womit man das am besten multipliziert, um das Element zu erhalten, was im Dividenden die höchste Potenz hat. Damit dann die restlichen Elemente des Divisors multiplizieren usw.
Sobald die Divisorpotenz größer als die Dividendenpotenz bleibt der Rest, wie es in der Aufgabe aufgeführt ist [mm] ((2x-1):x^2-5x+6,25). [/mm]

Bezug
                
Bezug
polynomdivision: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:29 Mi 25.01.2006
Autor: daniel13

Aufgabe
[mm] (x^4-5x^3-9,25x^2-13x+17,75):(x^2-5x+6,25)=x^2-15,5.. [/mm]
[mm] -(x^4-5x^3+6,25x^2) [/mm]
__________________
                   [mm] -15,5x^2-13x [/mm]

guten abend

bei mir würd sich das dann aber leider so weiter entwickeln, wenn ich das analog rechne...
danke für schnelle antwort bitte auch noch einen rechenweg oder tip was bei mir nicht stimmt.

Bezug
                        
Bezug
polynomdivision: Antwort
Status: (Antwort) fertig Status 
Datum: 23:45 Mi 25.01.2006
Autor: djmatey

Hallo,
Deine Lösung stimmt so - anscheinend ist die vorgegebene Lösung falsch. Wahrscheinlich wurde dort, wo die [mm] x^{2} [/mm] e voneinander abgezogen werden, Murks gemacht, denn 9,25-6,25 ergibt gerade 3. Nur so ne Vermutung...
Liebe Grüße,
Matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]