www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale Funktionenpolynomdivision,Nullstelle
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Ganzrationale Funktionen" - polynomdivision,Nullstelle
polynomdivision,Nullstelle < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

polynomdivision,Nullstelle: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:21 Di 05.02.2008
Autor: Tokhey-Itho

Aufgabe
1) [mm] (x^4-16): (x-2)=x^3 [/mm]
    [mm] x^4-16 [/mm]
__________________
       -16
???
[mm] 2)f`(x)=4x^3-8x [/mm]
         [mm] 4x(x^2-2) [/mm]

Hallo zusammen,
ich bereite mich gerade für eine Klausur vor und mir sind 2 SAchen aufgefallen,die ich nicht verstehe.In dem ersten beispiel mit der polynomdivision verstehe ich nciht wie man da weiterrechnen soll.Ich weiß zwar das Ergebnis [mm] (x^3+2x^2+4x+8) [/mm] aber ich verstehe nicht wie man da weiterrechnen soll,wenn da Zahlen fehlen?
Und bei dem zweiten Bespiel soll man die Nullstellen herausfinden.Ich habe mir in meinem Heft aufgeschrieben
,dass [mm] x^3 [/mm] keine Konstante ist und deshalb mjuss man dort ausklammern.Also wenn im Beispiel irgendeine Variable (?)höher ist als [mm] x^2,dann [/mm] muss ich ausklammern,oder?

Ich hoffe ich habe mich deutlich genung ausgedrückt,wenn nicht dann einfahc mal fragen:)

Vielen Dank im Voraus,
tokhey-Itho

        
Bezug
polynomdivision,Nullstelle: zur Polynomdivision
Status: (Antwort) fertig Status 
Datum: 11:29 Di 05.02.2008
Autor: Roadrunner

Hallo Tokhey-Itho!


Schreibe Deine MBPolynomdivision wie folgt ausführlich auf; dann solltes klar sein, wie es weitergeht ...

[mm] $$\left(x^4-16\right) [/mm] \ : \ (x-2) \ = \ [mm] \left(x^4+0*x^3+0*x^2+0*x-16\right) [/mm] \ : \ (x-2) \ = \ ...$$

Gruß vom
Roadrunner


Bezug
        
Bezug
polynomdivision,Nullstelle: ausklammern
Status: (Antwort) fertig Status 
Datum: 11:36 Di 05.02.2008
Autor: Roadrunner

Hallo Tokhey-Itho!


So ganz verstehe ich Deinen Hefteintrag nicht. Wenn ein Faktor in allen Termen vorhanden ist, sollte man ausklammern, um weitestgehend zu faktorisieren. Das hat nicht mit [mm] $x^3$ [/mm] und "Konstante" zu tun.


Gruß vom
Roadrunner


Bezug
        
Bezug
polynomdivision,Nullstelle: Antwort
Status: (Antwort) fertig Status 
Datum: 12:31 Di 05.02.2008
Autor: mathemak

Hallo!

[mm] $x^4-16 [/mm] = [mm] (x^2+4)(x^2-4) [/mm] = [mm] (x^2+4)(x+2)(x-2)$ [/mm]

Faktorieren mittels Binomischen Formeln erspart die Polynomdivision.

Ansonsten Hornerschema verwenden und dabei beachten:

[mm] $x^4-16 [/mm] = [mm] 1\cdot x^4 [/mm] + 0 [mm] \cdot x^3 [/mm] + 0 [mm] \cdot x^2 [/mm] + 0 [mm] \cdot [/mm] x -16$

Gruß

mathemak

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]