www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebrapositiv definit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - positiv definit
positiv definit < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

positiv definit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:34 Do 05.10.2006
Autor: vicky

Aufgabe
Sei B eine Basis des [mm] \IR^2 [/mm] und eine Bilinearform [mm] \beta: \IR^2 [/mm] x [mm] \IR^2\to\IR [/mm] in dieser Basis durch die Matrix
                     [mm] M_{B}(\beta)=\pmat{ 1 & 2 \\ 2 & 1 } [/mm]
gegeben. Wird durch  [mm] \IR^2 [/mm] zu einem euklidischen Vektorraum?

Hallo,

habe die Lösung in Kurzversion bereits vorliegen, doch ich weiß nicht wie man darauf kommt!

Lösung: Die Bilinearform ist offenbar symmetrisch. Für [mm] v=b_{1}-b{2} [/mm] gilt
                          
                             [mm] \beta(v,v)=1-2*2+1=-2 [/mm]

was negativ ist. Also ist die Bilinearform nicht positiv definit, definiert also nicht die Struktur eines euklidischen Vektroraums auf [mm] \IR^2. [/mm]

Wie kommt man auf o.g. Gleichung?

Vielen Dank schon mal für eure Hilfe.

Grüße
vicky

        
Bezug
positiv definit: Antwort
Status: (Antwort) fertig Status 
Datum: 00:05 Fr 06.10.2006
Autor: Event_Horizon

Die Sache mit der Symmetrie ist eigentlich eindeutig, oder?


Zum positiv definiten:

Das heißt, daß

[mm] $\vektor{x \\ y} \pmat{ 1 & 2 \\ 2 & 1 } \vektor{x \\ y}>0$ [/mm]

immer gelten muß. Rechne das mal aus, dann kommst du auf

x²+2xy+2x²+y>0

Das gilt sicherlich nicht immer. Ein Gegenbeispiel ist  x=+1, y=-1

Damit ist gezeigt, daß das Ding nicht positiv definit ist. Du kannst den Beweis algebraisch sicherlich auch führen, am einfachsten ist aber manchmal ein simples Gegenbeispiel.

Und genau das wurde in deiner Lösung gemacht. Die [mm] b_i [/mm] sind die beiden Basisvektoren, und [mm] $\vec v=\vec b_1- \vec b_2=\vektor{1 \\ -1}=\vektor{x \\ y}$ [/mm] ist eben dieses Gegenbeispiel, nur so ausgedrückt, daß man es nicht sofort sieht.

Bezug
                
Bezug
positiv definit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:41 Fr 06.10.2006
Autor: vicky

Einen wunderschönen guten Morgen zusammen,

Klasse, viele Dank für die super Antwort.

Noch kurz ne Frage am Rande. Habe gelesen das gewisse Untermatrizen >0 sein müssen um auch positiv definit zu zeigen. Das heißt soviel wie; ich habe eine Matrix [mm] \pmat{ a & b \\ b & c } [/mm] und es muß gezeigt werden das a>0 und [mm] ac-b^2 [/mm] > 0 ist. Dies würde darauf hinauslaufen das letztere Ungleichung nicht erfüllt werden würde und somit die o.g. Matrix nicht positiv definit ist oder argumentiert man so eher weniger ?

Nochmals herzlichen Dank, das hat mich in meinem mathematischen Denken wieder einen Schritt nach vorne gebracht:-)

Schönen Tag noch und danke für die Hilfe.

Grüße
vicky

Bezug
                        
Bezug
positiv definit: Antwort
Status: (Antwort) fertig Status 
Datum: 07:54 Fr 06.10.2006
Autor: Gonozal_IX

Guten Morgen vicky :-)

Da die beiden Aussagen äquivalent sind, ist es mehr oder weniger egal, wie du argumentierst. Allerdings hatte Horizon ja bereits geschrieben, daß meist ein simples Gegenbeispiel schneller geht, als ein ausführlicher Beweis.

Allerdings bleibt es letztendlich dir überlassen, wie du das machst.

Gruß,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]