primitives Element < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:36 Di 29.04.2014 | Autor: | Topologe |
Aufgabe | Bestimmen Sie ein primitives Element der Körpererweiterung [mm] \IQ(\wurzel[3]{5},\zeta) [/mm] über [mm] \IQ, [/mm] mit [mm] \zeta=exp(\bruch{2\pi*i}{3}) [/mm] |
Hallo
Mein Gedanke wäre [mm] \alpha=\wurzel[3]{5} [/mm] + [mm] \zeta
[/mm]
Mein Weg wäre zu zeigen, dass der Grad des Minimalpolynoms gleich dem Grad der Körper-Erweiterung aus der Aufgabenstellung ist. Da ausserdem gilt [mm] \alpha \in \IQ(\wurzel[3]{5},\zeta) [/mm] folgt die Behauptung. Nur mein Problem liegt in der Bestimmung des Minimalpolynoms. Da der Grad 9 beträgt, ist der Knobelaufwand doch recht erheblich. Gibt es hier vllt einen Trick, wie man das Polynom effizienter bestimmen könnte?
LG
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:36 Di 29.04.2014 | Autor: | hippias |
Der Grad der Erweiterung ist hoechstens $6$, was aber immer noch recht viel ist. Deine Wahl ist aber wohl gut.
Wenn Du weisst, dass die Erweiterung galoisch ist, und Du die Automorphismengruppe $G$ ablesen kannst, dann kannst Du den Grad Minimalpolynoms ueber die Laenge des Orbits von [mm] $\alpha$ [/mm] bezueglich $G$ ablesen. Damit sieht man schnell, dass der Grad $6$ ist.
Ohne es ausprobiert haben, koennte man sich auch ueberlegen, dass aufgrund der Kleinheit des Erweiterungsgrades so viele Grade des Minimalpolynoms gar nicht in Frage kommen: es sind ja Teiler. Vielleicht kann man sich damit ein paar Rechnungen ersparen.
Sonst koennte man auch noch ein paar Potenzen von [mm] $\alpha$ [/mm] berechnen, in der Hoffnung, dass man schnell eine Abhaengigkeit erkennt.
|
|
|
|