www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraprinzpale Hüllenabbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Algebra" - prinzpale Hüllenabbildung
prinzpale Hüllenabbildung < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

prinzpale Hüllenabbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:15 Fr 24.11.2006
Autor: Franzie

Aufgabe
Zeigen Sie, dass [mm] \gamma [/mm] genau dann eine prinzipale Hüllenabbildung auf M ist, wenn für alle t, x, y [mm] \in [/mm] M zum einen t [mm] \in [/mm] gilt.
Zeigen Sie, dass [mm] fü\gamma [/mm] (x), x [mm] \in \gamma [/mm] (y) [mm] \to \gamma [/mm] (t) [mm] \in \gamma [/mm] (y) r eine beliebige prinzipale Hüllenabbildung [mm] \gamma [/mm] auf M und jedes x [mm] \in [/mm] M das Mengensystem [mm] \left\{\gamma*t | t \in \gamma(x) \right\} [/mm] eine Partitionierung von gamma(x) ist.

Hallöchen Leute!

hab ein Problem bei der obigen Aufgabe. Den ersten Teil hab ich schon soweit gelöst, aber bei dem Teil mit der Partitionierung hängt's bei mir. Ich weiß zwar, welche Merkmale eine Partition hat, aber nicht, wie ich das auf die obige Aufgabe transformieren soll.
Also, es wäre zu zeigen:
Ein Mengensystem X [mm] \subseteq 2^A [/mm] ist eine Partition von A, wenn gilt:
1. Y [mm] \ne \emptyset [/mm] für alle Y [mm] \in [/mm] X
2. Y [mm] \cap [/mm] Z = [mm] \emptyset [/mm]  für alle Y,Z [mm] \in [/mm] X, Y [mm] \ne [/mm]  Z
3. [mm] \cap [/mm] X=A
Aber wie wende ich das jetzt auf die Hüllenabbildung an? Könnt ihr mir vielleicht einen Tipp geben?

liebe Grüße

        
Bezug
prinzpale Hüllenabbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:19 So 26.11.2006
Autor: Mr_ED

Hallo!

Du musst folgendes zeigen:
- [mm] \gamma^\ast t\not=\emptyset [/mm] für alle [mm] t\in\gamma(x) [/mm]
- [mm] \gamma^\ast s\cap\gamma^\ast t=\emptyset [/mm] für alle [mm] s,t\in\gamma(x) [/mm] mit [mm]\gamma^\ast s\not=\gamma^\ast t[/mm]
- [mm] \bigcup_{t\in\gamma x}\gamma^\ast t=\gamma(x) [/mm]

Das sollte recht einfach gehen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]