www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10quadratische Ungleichungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 8-10" - quadratische Ungleichungen
quadratische Ungleichungen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

quadratische Ungleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:57 Di 17.01.2006
Autor: maximinus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

In meinem Mathe-Arbeitsheft ist u.a. der Fall aufgeführt, bei der eine quadratische Ungleichung der Form [mm]x^2 < c[/mm] nicht erfüllbar ist. Und zwar:
nicht erfüllbar, wenn: [mm]x^2 < c \wedge c < 0[/mm].

Ich meine das ist falsch. Denn der kleinste Wert, den der linke Term haben kann ist [mm]0^2 = 0[/mm]. Es müßte also richtigerweise lauten:
nicht erfüllbar, wenn [mm]x^2 < c \wedge c \le 0[/mm]
da für [mm]c = 0[/mm] die Aussage niemals wahr sein kann.

Ich möchte gerne wissen, ob ich Recht habe?

Vielen Dank

        
Bezug
quadratische Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:10 Di 17.01.2006
Autor: Renatius

Du hast absolut Recht. Es muss sich um ein Druckfehler handeln

Bezug
                
Bezug
quadratische Ungleichungen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:18 Di 17.01.2006
Autor: maximinus

Danke!

Leider kommt dieser "Druckfehler" gleich mehrere Male vor, deshalb war ich mir unsicher.

Bezug
        
Bezug
quadratische Ungleichungen: Aussage richtig
Status: (Antwort) fertig Status 
Datum: 23:50 Di 17.01.2006
Autor: Marc

Hallo maximinus,

> In meinem Mathe-Arbeitsheft ist u.a. der Fall aufgeführt,
> bei der eine quadratische Ungleichung der Form [mm]x^2 < c[/mm]
> nicht erfüllbar ist. Und zwar:
>  nicht erfüllbar, wenn: [mm]x^2 < c \wedge c < 0[/mm].
>  Ich meine
> das ist falsch.

Da hast Du genau genommen Unrecht; die Aussage ist richtig. Es wird ja nicht behauptet, dass dies alle Werte für c sind, für die die Ungleichung nicht erfüllbar ist, sondern nur, dass die Ungleichung für c<0 sicher nicht erfüllbar ist.

Wenn [mm] $x^2 [/mm] < c [mm] \wedge [/mm] c < 0$ dann ist die quadratische Ungleichung nicht erfüllbar.

Und diese Behauptung ist richtig!

> Denn der kleinste Wert, den der linke Term
> haben kann ist [mm]0^2 = 0[/mm]. Es müßte also richtigerweise
> lauten:
> nicht erfüllbar, wenn [mm]x^2 < c \wedge c \le 0[/mm] da für [mm]c = 0[/mm]
> die Aussage niemals wahr sein kann.

Deine umformulierte Aussage ist aber auch richtig:

Wenn [mm] $x^2 [/mm] < c [mm] \wedge [/mm] c [mm] \le [/mm] 0$ dann ist die quadratische Ungleichung nicht erfüllbar.

Viele Grüße,
Marc

Bezug
                
Bezug
quadratische Ungleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:18 Mi 18.01.2006
Autor: Renatius

Marc hat Recht, war wohl zu müde. Also im Grunde genommen ist deine Aussage präziser, doch beide sind wahr. Sorry nochmal (ich sollte mehr Kaffee trinken ^^)

Bezug
                
Bezug
quadratische Ungleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:42 Mi 18.01.2006
Autor: maximinus

Danke auch dir!

Du hast Recht: die Aussage für sich genommen ist wahr, was mir vorher nicht aufgefallen war. Allerdings wird in dem Arbeitsheft implizit vorausgesetzt, dass dies alle Werte für c seien, bei denen die Ungleichung nicht erfüllbar ist. Den Eindruck habe ich jedenfalls.

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]