r-Linearform < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:33 Fr 25.04.2008 | Autor: | briddi |
Aufgabe | Ich habe diese Frage auf keiner anderen Internetseite gestellt.
Die folgende aufgabe soll Ihnen zeigen, wie man Determinanten einesEndomorphismus definieren kann,ohne dass man vorher Determinanten von Matrizen einführt.
Sei K ein Körper, in dem 1 + 1 [mm]\not=[/mm] 0 gilt und [mm] V_{i}, 1\le i \ler [/mm] endlich-dimensionale K-Vektorräume. Eine Abbildung
[mm] \phi: V_{1} \times ....V_{r}\to K[/mm]
heißt r-Linearform, wenn sie in jedem Argument K-linear ist.
Zeigen Sie, dass die Menge aller r-Linearformen ein K-Vektorraum ist, und bestimmen Sie seine Dimension als Funktion der Vektorräume [mm] V_{i}[/mm] |
Ich muss doch jetzt zuerst die Vektorraumaxiome zeigen,also dass mit der Addition eine abelsche Gruppe vorliegt und die skalare Multiplikation verträglich ist.
Mein Problem ist jedoch, dass ich glaube ich diese Abbildung nicht verstehe. Das neutrale Element der Addition müsste doch dann eine Abbildung sein, die nichts verändert, das entspricht doch gewöhnlich der Identitätsabbildung, die kann ja aber hier nicht vorliegen, da jedem Tupel ein Element aus K zugeordnet wird.
Oder,gerade kommt mir eine weitere Idee,ist das neutrale Element die Abbildung, die alle Tupel auf Null abbildet. Zwei Abbildungen addiert man doch,indem man die Funktionswerte addiert,und wenn diese immer Null sind,so würde sich durch Addition nichts verändern.
Oder ist das anders zu verstehen?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:32 Fr 25.04.2008 | Autor: | statler |
Hi!
> Die folgende aufgabe soll Ihnen zeigen, wie man
> Determinanten einesEndomorphismus definieren kann,ohne dass
> man vorher Determinanten von Matrizen einführt.
> Sei K ein Körper, in dem 1 + 1 [mm]\not=[/mm] 0 gilt und [mm]V_{i}, 1\le i \ler[/mm]
> endlich-dimensionale K-Vektorräume. Eine Abbildung
>
> [mm]\phi: V_{1} \times ....V_{r}\to K[/mm]
> heißt r-Linearform, wenn
> sie in jedem Argument K-linear ist.
>
> Zeigen Sie, dass die Menge aller r-Linearformen ein
> K-Vektorraum ist, und bestimmen Sie seine Dimension als
> Funktion der Vektorräume [mm]V_{i}[/mm]
> Ich muss doch jetzt zuerst die Vektorraumaxiome
> zeigen,also dass mit der Addition eine abelsche Gruppe
> vorliegt und die skalare Multiplikation verträglich ist.
> Mein Problem ist jedoch, dass ich glaube ich diese
> Abbildung nicht verstehe. Das neutrale Element der Addition
> müsste doch dann eine Abbildung sein, die nichts verändert,
> das entspricht doch gewöhnlich der Identitätsabbildung, die
> kann ja aber hier nicht vorliegen, da jedem Tupel ein
> Element aus K zugeordnet wird.
Da hast du gerade noch die Kurve gekriegt.
> Oder,gerade kommt mir eine weitere Idee,ist das neutrale
> Element die Abbildung, die alle Tupel auf Null abbildet.
> Zwei Abbildungen addiert man doch,indem man die
> Funktionswerte addiert,und wenn diese immer Null sind,so
> würde sich durch Addition nichts verändern.
Das ist die bessere Idee!
Gruß aus HH-Harburg
Dieter
|
|
|
|