www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Matrizenrang(AB)<=min{rang(A),rang(B)}
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Matrizen" - rang(AB)<=min{rang(A),rang(B)}
rang(AB)<=min{rang(A),rang(B)} < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

rang(AB)<=min{rang(A),rang(B)}: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:41 Mi 19.05.2010
Autor: Stefan-auchLotti

Aufgabe
Es seien [mm] $A\in K^{l\times m}$ [/mm] und [mm] $B^{m\times n}$ [/mm] Matrizen. Beweisen Sie, dass

[mm] $$\mathrm{rang}(AB)\le \mathrm{min}\{\mathrm{rang}(A),\mathrm{rang}(B)\}$$ [/mm]

ist.

Hallo,

ich weiß, dass ihr schon x Leuten bei dieser Aufgabe geholfen habt, aber ich komme einfach nicht weiter.

Ich weiß, dass [mm] $\mathrm{rang}(AB)=\mathrm{min}(l,n)$ [/mm] gilt. Dieselben Fakten kenne ich über $A$ und $B$.

Ich weiß weiter, dass ich mit den induzierten Abbildungen von $A$, $B$ und $AB$ arbeiten muss. Das haben wir aber noch kaum gemacht.

[mm] $\mathrm{Bild } (\psi \circ \varphi) [/mm] = [mm] \mathrm{Kern } (\varphi \circ \psi)$ [/mm]

[mm] $\mathrm{Bild } (\psi \circ \varphi) \subseteq \mathrm{Bild } (\psi)$ [/mm]

[mm] $\mathrm{Bild } (\psi \circ \varphi) \subseteq \mathrm{Bild } (\varphi)$ [/mm]

[mm] $\mathrm{Kern } (\psi)\subseteq \mathrm{Kern } (\psi \circ \varphi)$ [/mm]

[mm] $\mathrm{Kern } (\psi \circ \varphi) \subseteq \mathrm{Kern }(\varphi)$ [/mm]

weiß ich auch noch. Aber wie arbeite ich damit bzgl. der Abbildungen der Matrizen?

Grüße, Stefan.

        
Bezug
rang(AB)<=min{rang(A),rang(B)}: Antwort
Status: (Antwort) fertig Status 
Datum: 09:04 Do 20.05.2010
Autor: Niladhoc

Hallo,

ich würde es mit einer Argumentation über eine Basis aus Eigenvektoren machen, oder dürft ihr nur Sätze über lineare Abbildungen verwenden?

lg

Bezug
                
Bezug
rang(AB)<=min{rang(A),rang(B)}: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:13 Do 20.05.2010
Autor: angela.h.b.


> Hallo,
>  
> ich würde es mit einer Argumentation über eine Basis aus
> Eigenvektoren machen

Hallo,

da bin ich aber etws skeptisch - insbesondere für den Fall, daß es keine solche Basis gibt...

Gruß v. Angela

Bezug
                        
Bezug
rang(AB)<=min{rang(A),rang(B)}: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:59 Do 20.05.2010
Autor: Niladhoc

]
Bezug
        
Bezug
rang(AB)<=min{rang(A),rang(B)}: Antwort
Status: (Antwort) fertig Status 
Datum: 09:46 Do 20.05.2010
Autor: angela.h.b.


> Es seien [mm]A\in K^{l\times m}[/mm] und [mm]B^{m\times n}[/mm] Matrizen.
> Beweisen Sie, dass
>  
> [mm]\mathrm{rang}(AB)\le \mathrm{min}\{\mathrm{rang}(A),\mathrm{rang}(B)\}[/mm]
>  
> ist.

> Ich weiß, dass [mm]\mathrm{rang}(AB)=\mathrm{min}(l,n)[/mm] gilt.

Hallo,

nein, das gilt i.a. nicht, sondern es gilt [mm] \mathrm{rang}(AB)\le \mathrm{min}(l,n) [/mm]

> Dieselben Fakten kenne ich über [mm]A[/mm] und [mm]B[/mm].
>  
> Ich weiß weiter, dass ich mit den induzierten Abbildungen
> von [mm]A[/mm], [mm]B[/mm] und [mm]AB[/mm] arbeiten muss. Das haben wir aber noch kaum
> gemacht.

Leider schreibst Du gar nicht, was [mm] \psi [/mm] und [mm] \varphi [/mm] unten sein sollen.

>  
> [mm]\mathrm{Bild } (\psi \circ \varphi) = \mathrm{Kern } (\varphi \circ \psi)[/mm]

Das dürfte i.a. nicht stimmen - oftmals wird eine der beiden Verkettungen nichtmal definiert sein.

> [mm]\mathrm{Bild } (\psi \circ \varphi) \subseteq \mathrm{Bild } (\psi)[/mm]

stimmt

>  
> [mm]\mathrm{Bild } (\psi \circ \varphi) \subseteq \mathrm{Bild } (\varphi)[/mm]

Das stimmt i.a. nicht.

>  
> [mm]\mathrm{Kern } (\psi)\subseteq \mathrm{Kern } (\psi \circ \varphi)[/mm]

Eher nicht...

>
> [mm]\mathrm{Kern } (\psi \circ \varphi) \subseteq \mathrm{Kern }(\varphi)[/mm]

Auch nicht.


> weiß ich auch noch.

Hm... Wo Du das wohl aufgeschnappt hast... Vielleicht waren da irgendwelche speziellen Voaussetzungen...


So jetzt fangen mir mal an.

[mm] f_B: K^n\to K^m, [/mm]
[mm] f_A: K^m\to K^l [/mm]
[mm] f_A_B: K^n\to K^l. [/mm]

Ich denke, rang(C)=dim [mm] Bild(f_C) [/mm] ist klar.

Zeigen sollst Du also, daß dim [mm] Bild(f_A_B)\le [/mm] min [mm] \{dim Bild(f_A), dim Bild(f_B)\} [/mm] ist.

Zeige hierfür

i) dim [mm] Bild(f_A_B)\le [/mm] dim [mm] Bild(f_A) [/mm]
ii) dim [mm] Bild(f_A_B)\le [/mm] dim [mm] Bild(f_B). [/mm]

zu i)
Zeige, daß [mm] Bild(f_A_B) \subseteq Bild(f_A) [/mm]

zu ii)
Zeige, daß [mm] Kern(f_B)\subseteq Kern(f_A_B), [/mm]
und verwende dim [mm] Bild(f_A_B)= [/mm] n - [mm] Kern(f_A_B) [/mm]

Gruß v. Angela




Bezug
                
Bezug
rang(AB)<=min{rang(A),rang(B)}: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:07 Do 20.05.2010
Autor: Stefan-auchLotti

Hallo,

entschuldigt, dass ich mich jetzt erst melde, die Aussagen über [mm] $\phi$ [/mm] und [mm] $\psi$ [/mm] hab ich zu der späten Stunde aus einem Multiplechoicetest kopiert, den ich machen musste, da waren die meisten Aussagen von überhaupt nicht richtig. Sorry dafür!

Vielen Dank für die Hilfe!

Stefan.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]