www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisratio. Funkt. diverenzierbar??
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - ratio. Funkt. diverenzierbar??
ratio. Funkt. diverenzierbar?? < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ratio. Funkt. diverenzierbar??: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:31 Mo 31.01.2005
Autor: Teletubyyy

Hallo,

Die Frage wirkt jetzt hoffentlich nicht zu dumm?? ;-)

Eine Funktion$f: [mm] \IR \rightarrow \IR$ [/mm] ,  [mm]f(x)=\begin{cases} 0, & \mbox{für } x \in \IR \mbox{ und } x \not\in \IQ \\ 1, & \mbox{für } x \in \IQ \end{cases}[/mm]
dürfte eigentlich an keiner Stelle diverenzierbar sein, so es sonst zwei "benachbarte" rationale (irrationale) Zahlen geben müsste, zwischen denen keine irrationale (rationale) Zahl liegt. Ist offenbar nicht der Fall, wenn auch eine mathematisch exakte Konstruktion nicht ganz leicht sein dürfte... (darf man so argumentieren?)
Allgemein kann man dann doch auch sagen:
Eine Funktion$f: [mm] \IR \rightarrow \IR$ [/mm] ,  [mm]f(x)=\begin{cases} g(x), & \mbox{für } x \in \IR\mbox{ und} \not\in\IQ \\ h(x), & \mbox{für } x \in \IQ \end{cases}[/mm] mit g(x) [mm] \not= [/mm] h(x) ist nicht differenzierbar. Ist damit dann auch g nicht differenzierbar [mm] (g:\IR\rightarrow \IR [/mm] \ [mm] \IQ)? [/mm]
und gilt entsprechendes auch für jede andere Funktion $h: [mm] \IR\rightarrow\IQ$ [/mm]  ? Und wie stehts mit einer Funktion [mm]i: \IQ \rightarrow \IQ[/mm]?

Wenn sich jemand herablässt einem armen verwirrten Schüler eine Antwort zu geben jetzt schon mal DANKE ;-)!

Gruß Samuel

        
Bezug
ratio. Funkt. diverenzierbar??: Differenzierbarkeit
Status: (Antwort) fertig Status 
Datum: 00:09 Di 01.02.2005
Autor: Hugo_Sanchez-Vicario

Hallo Samuel,

eine differenzierbare Funktion ist auch immer schon stetig. Deine Funktion
[mm]1_{\IQ}(x)=\begin{cases}1 \mbox{ für } x\in\IQ\\ 0 \mbox{ sonst }\end{cases}[/mm]
ist nicht stetig. Deshalb kann sie auch nicht diff'bar sein. (Man nennt sie übrigens charakteristische Funktion von [mm] \IQ [/mm] .) Sie ist sogar nirgends stetig, denn beliebig nahe bei jeder Zahl, egal ob rational oder irrational, treten immer sowohl der Funktionswert 0 als auch der Funktionswert 1 auf.

Bei deinem zweiten Beispiel kannst du von f nicht auf g und h schließen.
Als Gegenbeispiel genügt [mm] f=1_{\IQ} [/mm] , denn hier ist f nicht stetig, aber offensichtlich sind g und h beide differenzierbar.

Na hoffentlich hat sich deine Verwirrung etwas gelegt. ;-)

Im Mathe-Grundstudium bekommst du aber ausführlich mit solchen Sachen zu tun. :-)

Hugo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]