www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebrareelle Folgen / Isomorphismen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - reelle Folgen / Isomorphismen
reelle Folgen / Isomorphismen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

reelle Folgen / Isomorphismen: Prblem
Status: (Frage) beantwortet Status 
Datum: 14:15 Mo 02.01.2006
Autor: rosahubert

Aufgabe
Sei F = {(an)n∊N | an ∊ R, ∀n ∊ N} die Menge aller reellen Folgen. F wird vermöge
(an)n∊N + (bn)n∊N = (an + bn)n∊N
c (an)n∊N = (can)n∊N , c ∊ R
zu einem R-Vektorraum. (Dies muß nicht gezeigt werden).
Sei f : F → F definiert durch (an)n∊N = (a1, a2, a3, . . .)  → (a2, a3, a4, . . .). Zeigen Sie, dass f
linear, surjektiv, jedoch nicht injektiv ist.

Hallo!
Habe ein kleines Problem bzgl. Injektivität und Surjektivität.
(Linearität zu zeigen ist ja nicht weiter schwer, oder?)
Bein injektiv und urjektiv habe ich aber leider keinen Schimmer, was ich da tun kann.
Vielen Dank!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
reelle Folgen / Isomorphismen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:31 Mo 02.01.2006
Autor: moudi


> Sei F = {(an)n∊N | an ∊ R, ∀n ∊ N}
> die Menge aller reellen Folgen. F wird vermöge
>  (an)n∊N + (bn)n∊N = (an + bn)n∊N
>  c (an)n∊N = (can)n∊N , c ∊ R
>  zu einem R-Vektorraum. (Dies muß nicht gezeigt werden).
>  Sei f : F → F definiert durch (an)n∊N = (a1,
> a2, a3, . . .)  → (a2, a3, a4, . . .). Zeigen Sie,
> dass f
>  linear, surjektiv, jedoch nicht injektiv ist.
>  
> Hallo!

Hallo rosahubert

>  Habe ein kleines Problem bzgl. Injektivität und
> Surjektivität.
>  (Linearität zu zeigen ist ja nicht weiter schwer, oder?)
>  Bein injektiv und urjektiv habe ich aber leider keinen
> Schimmer, was ich da tun kann.

Für die Surjektivität musst du zeigen, dass jede Folge als Bild under der Abbildung f auftritt.
Sei [mm] $\mathbf b=b_1,b_2,b_3,\dots$ [/mm] eine Folge aus F. Jetzt muss du eine Folge [mm] $\mathbf a=a_1,a_2,a_3,\dots$ [/mm] angeben, so dass [mm] $f(\mathbf a)=\mathbf [/mm] b$ ist. Das sollte nicht so schwer sein.

Injektiv heisst, dass unter der Abbildung f verschiedenen Folgen auch verschiedene Bilder haben. Da f nicht injektiv ist, musst du nur zwei verschiedene Folgen angeben, dessen Bilder gleich sind, d.h. du musst [mm] $\mathbf a=a_1,a_2,a_3,\dots$ [/mm] und [mm] $\mathbf b=b_1,b_2,b_3,\dots$ [/mm] suchen mit [mm] $\mathbf a\neq\mathbf [/mm] b$ und [mm] $f(\mathbf a)=f(\mathbf [/mm] b)$. Auch dies sollte nicht allzuschwierig sein.

mfG Moudi

>  Vielen Dank!
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]