www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale Funktionenreelle Funktion mit Parameter
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Ganzrationale Funktionen" - reelle Funktion mit Parameter
reelle Funktion mit Parameter < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

reelle Funktion mit Parameter: Idee
Status: (Frage) beantwortet Status 
Datum: 16:02 Sa 18.09.2010
Autor: kcler

Aufgabe
Gegeben sind die reellen Funktionen:

fk(x) = 1/8*(x²-k)(x²-4)

Der Graph der Funktion wird mit Gfk bezeichnet.

1.1 Nun soll ich folgende Aussage begründen:
Für jeden Parameter k mit k<0 schneidet der Graph Gfk die x-Achse zweimal, berührt sie jedoch nicht.

1.2 Symmetrienachweis

1.3 Bestimmen Sie in Abhängigkeit von k die x-Koordinaten derjenigen Punkte, in denen der Graph Gfk waagrechte Tangenten aufwe

1.1 Im Prinzip weiß ich schon was mit der Aufgabe gemeint ist, weiß aber nicht wie ich es richtig mathematisch ausdrücken soll.
Ist es nicht so das die hinreichende Bedingung für einen Berührpunkt: f(x)=g(x) und f´(x)=g´(x) ist?

1.2 f(x) = f(-x), da es ja in dem Fall symmetrisch zur y-Achse sein muss
Lieg ich da richtig? Die Gleichung der x-Achse müsste ja dann x=0 lauten.

1.3 Hier weiß ich überhaupt nicht weiter, da mich der Parameter zum Teil irritiert.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
reelle Funktion mit Parameter: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 Sa 18.09.2010
Autor: MathePower

Hallo kcler,

> Gegeben sind die reellen Funktionen:
>  
> fk(x) = 1/8*(x²-k)(x²-4)
>  
> Der Graph der Funktion wird mit Gfk bezeichnet.
>  
> 1.1 Nun soll ich folgende Aussage begründen:
>  Für jeden Parameter k mit k<0 schneidet der Graph Gfk die
> x-Achse zweimal, berührt sie jedoch nicht.
>  
> 1.2 Symmetrienachweis
>  
> 1.3 Bestimmen Sie in Abhängigkeit von k die x-Koordinaten
> derjenigen Punkte, in denen der Graph Gfk waagrechte
> Tangenten aufwe
>  1.1 Im Prinzip weiß ich schon was mit der Aufgabe gemeint
> ist, weiß aber nicht wie ich es richtig mathematisch
> ausdrücken soll.
>  Ist es nicht so das die hinreichende Bedingung für einen
> Berührpunkt: f(x)=g(x) und f´(x)=g´(x) ist?



Ja.

Hier musst Du zeigen, wenn

[mm]f_{k}\left(x_{0}\right)=0, \ k < 0 [/mm]

,daß dann

[mm]f'_{k}\left(x_{0}\right) \not=0, \ k < 0 [/mm]

ist.


>  
> 1.2 f(x) = f(-x), da es ja in dem Fall symmetrisch zur
> y-Achse sein muss
>  Lieg ich da richtig? Die Gleichung der x-Achse müsste ja
> dann x=0 lauten.


Ja.


>  
> 1.3 Hier weiß ich überhaupt nicht weiter, da mich der
> Parameter zum Teil irritiert.


Berechne [mm]f'_{k}[/mm] und bestimme deren Nullstellen in Abhängigkeit von k


>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
                
Bezug
reelle Funktion mit Parameter: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:42 Sa 18.09.2010
Autor: kcler

Zu 1.1

Also wenn ich das richtig verstehe, dann einfach die FUnktion gleich 0 setzen und dann muss die 1. Ableitung ungleich 0 der Nullstelle sein oder?

Bezug
                        
Bezug
reelle Funktion mit Parameter: Antwort
Status: (Antwort) fertig Status 
Datum: 16:50 Sa 18.09.2010
Autor: MathePower

Hallo  kcler,

> Zu 1.1
>  
> Also wenn ich das richtig verstehe, dann einfach die
> FUnktion gleich 0 setzen und dann muss die 1. Ableitung
> ungleich 0 der Nullstelle sein oder?


Ja.


Gruss
MathePower

Bezug
                                
Bezug
reelle Funktion mit Parameter: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:57 Sa 18.09.2010
Autor: kcler

Ok, dann hätte ich noch eine abschließende Frage: Wie berechnet man in diesem Fall die Nullstelle?

Ansonsten Danke für deine schnelle und unkomplizierte Hilfe.

Bezug
                                        
Bezug
reelle Funktion mit Parameter: Antwort
Status: (Antwort) fertig Status 
Datum: 17:05 Sa 18.09.2010
Autor: MathePower

Hallo kcler,

> Ok, dann hätte ich noch eine abschließende Frage: Wie
> berechnet man in diesem Fall die Nullstelle?

Löse die Gleichung [mm]f_{k}\left(x_{0}\right)=0[/mm]

Da k<0 beschränkt sich diese Berechung auf das
lösen der Gleichung

[mm]x^2-4=0[/mm]


>  
> Ansonsten Danke für deine schnelle und unkomplizierte
> Hilfe.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]