www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenreihe mit komplexen zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - reihe mit komplexen zahlen
reihe mit komplexen zahlen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

reihe mit komplexen zahlen: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:52 Do 01.12.2011
Autor: anabiene

Aufgabe
hänge grad an der aufgabe fest :-/
für welche [mm] z\in\IC [/mm] ist diese reihe konvergent [mm] \summe_{n=1}^{\infty}n!z^n [/mm] ?

mit dem Quotientenkriterium und dem Wurzelkriterium hats bei mir nicht geklappt. Jetzt tret ich auf der stelle.

es reicht ja nicht wenn ich herausfinde, für welches [mm] z\in \IC [/mm] der term [mm] |n!z^n| [/mm] gegen 0 geht, weil ja z.b. die reihe [mm] \summe_{n=1}^{\infty}\bruch{1}{n} [/mm] nicht konvergiert, obwohl [mm] \bruch{1}{n} [/mm] gegen 0 geht. kann mir jemand weiterhelfen?


        
Bezug
reihe mit komplexen zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 Do 01.12.2011
Autor: schachuzipus

Hallo anabiene,


> hänge grad an der aufgabe fest :-/
> für welche [mm]z\in\IC[/mm] ist diese reihe konvergent
> [mm]\summe_{n=1}^{\infty}n!z^n[/mm] ?
>  mit dem Quotientenkriterium und dem Wurzelkriterium hats
> bei mir nicht geklappt.

Wieso nicht?

Für Potenzreihen ergibt sich aus dem QK das Eulerkriterium.

Berechne für [mm]\sum\limits_{n=0}^{\infty}a_n\cdot{}z^n[/mm] dann

[mm]r=\lim\limits_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|[/mm]

Dann ist der Konvergenzradius [mm]R=\frac{1}{r}[/mm] mit den Festlegungen [mm]\frac{1}{0}=\infty[/mm] und [mm]\frac{1}{\infty}=0[/mm]

Du hast dann (absolute) Konvergenz für [mm]|z|R[/mm]

Das kannst du dir (falls nicht bekannt) direkt aus dem QK herleiten ...


Wie es am Rand, also für [mm]|z|=R[/mm] aussieht, musst du separat untersuchen.

Hier mit [mm]a_n=n![/mm]

Was ergibt sich sofort?


> Jetzt tret ich auf der stelle.
>
> es reicht ja nicht wenn ich herausfinde, für welches [mm]z\in \IC[/mm]
> der term [mm]|n!z^n|[/mm] gegen 0 geht, weil ja z.b. die reihe
> [mm]\summe_{n=1}^{\infty}\bruch{1}{n}[/mm] nicht konvergiert, obwohl
> [mm]\bruch{1}{n}[/mm] gegen 0 geht. kann mir jemand weiterhelfen?

Siehe oben, außerdem weißt du, dass jede Potenzreihe zumindest in ihrem Entwicklungspunkt konvergiert, hier also für [mm]z=0[/mm], denn dann sind alle Summanden der Reihe ja =0 ...

Gruß

schachuzipus


Bezug
                
Bezug
reihe mit komplexen zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:19 Do 01.12.2011
Autor: anabiene

nach dem ich mich jetzt eine zeit lang mit der thematik beschäftigt habe bin ich hier:

[mm] \limes_{n\rightarrow\infty}\left|\bruch{a_{n+1}}{a_n}\right| [/mm] = [mm] \limes_{n\rightarrow\infty}\left|\bruch{(n+1)!z^{n+1}}{n!z^n}\right| [/mm] = [mm] \limes_{n\rightarrow\infty}|(n+1)z| [/mm] = [mm] |z|\limes_{n\rightarrow\infty}(n+1)<1 \gdw |z|<\bruch{1}{\limes_{n\rightarrow\infty}(n+1)}=:R [/mm]

dann kommt doch raus: [mm] R\to0, [/mm] da [mm] \bruch{1}{n+1}\to0 [/mm] für [mm] n\to \infty [/mm]

also |z|<R=0 ,aber wie soll der betrag kleiner 0 sein?

Bezug
                        
Bezug
reihe mit komplexen zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:28 Fr 02.12.2011
Autor: leduart

Hallo
genau, so ein z gibt es nicht. jetzt noch den Rand untersuchen z=0 dafür konv die summe, also nur für z=0
gruss leduart


Bezug
                                
Bezug
reihe mit komplexen zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:21 Fr 02.12.2011
Autor: anabiene

der rand? meinst du damit [mm] \limes_{n\rightarrow\infty}\left|\bruch{a_{n+1}}{a_n}\right| [/mm] = 1?

wenn ja, dann $ [mm] \limes_{n\rightarrow\infty}\left|\bruch{a_{n+1}}{a_n}\right| [/mm] $ = ... = $ [mm] |z|\limes_{n\rightarrow\infty}(n+1)=1 \gdw |z|=\bruch{1}{\limes_{n\rightarrow\infty}(n+1)}=:R=0 [/mm] $

[mm] \Rightarrow [/mm] |z|=0?

Bezug
                                        
Bezug
reihe mit komplexen zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:35 Fr 02.12.2011
Autor: fred97


> der rand? meinst du damit
> [mm]\limes_{n\rightarrow\infty}\left|\bruch{a_{n+1}}{a_n}\right|[/mm]
> = 1?
>  

nein.


> wenn ja, dann
> [mm]\limes_{n\rightarrow\infty}\left|\bruch{a_{n+1}}{a_n}\right|[/mm]
> = ... = [mm]|z|\limes_{n\rightarrow\infty}(n+1)=1 \gdw |z|=\bruch{1}{\limes_{n\rightarrow\infty}(n+1)}=:R=0[/mm]
>  
> [mm]\Rightarrow[/mm] |z|=0?

Ich versuchs mal so:

Du hattest:



$ [mm] \limes_{n\rightarrow\infty}\left|\bruch{a_{n+1}}{a_n}\right| [/mm] $ = $ [mm] \limes_{n\rightarrow\infty}\left|\bruch{(n+1)!z^{n+1}}{n!z^n}\right| [/mm] $ = $ [mm] \limes_{n\rightarrow\infty}|(n+1)z| [/mm] $ = $ [mm] |z|\limes_{n\rightarrow\infty}(n+1)$ [/mm]

Ist nun z [mm] \ne [/mm] 0, so ist  [mm] \limes_{n\rightarrow\infty}\left|\bruch{a_{n+1}}{a_n}\right| [/mm]  = [mm] \infty. [/mm]

Das QK sagt nun: die Reihe divergiert.

Fazit: die Reihe konvergiert nur für z=0

FRED


Bezug
                                                
Bezug
reihe mit komplexen zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Fr 02.12.2011
Autor: anabiene

ah ok gut :-)

vielen danke euch!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]