www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenreihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - reihen
reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

reihen: aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:02 So 30.11.2008
Autor: Algebra_lover

Aufgabe
Berechnen Sie die Summen folgender Reihen:
a) [mm] \summe_{n=3}^{\infty} (\bruch{-1}{10})^n [/mm]
b) [mm] \summe_{n=-2}^{\infty} (\bruch{2+(-1)^n}{2^n}) [/mm]

ich weiß da einfach net weiter könnte mir hier bitte jemand helfen.

        
Bezug
reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:18 So 30.11.2008
Autor: schachuzipus

Hallo Algebra_Lover,

> Berechnen Sie die Summen folgender Reihen:
> a) [mm]\summe_{n=3}^{\infty} (\bruch{-1}{10})^n[/mm]
>  b)
> [mm]\summe_{n=-2}^{\infty} (\bruch{2+(-1)^n}{2^n})[/mm]
>  ich weiß
> da einfach net weiter könnte mir hier bitte jemand helfen.

Wie weit kommst du denn?

Das sieht doch schwer nach geometrischen Reihen aus

Bei der ersten musst du nur beachten, dass der Laufindex nicht bei 0, sondern bei 3 losgeht, berechne also [mm] $\sum\limits_{n=0}^{\infty}\left(-\frac{1}{10}\right)^n$ [/mm] und ziehe die 3 Summanden für n=0,1,2 wieder ab

Bei der zweiten zerlege in zwei geometrische Reihen, einmal gerade Exponenten, einmal ungerade, du kannst die Summen (und damit die Reihen) auseinanderzeihen, weil beide geometrische Teilreihen absolut konvergent sind

Bisschen aufpassen mit den Indizes!

LG

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]