www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenrekursiv definiere reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - rekursiv definiere reihe
rekursiv definiere reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

rekursiv definiere reihe: aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:47 Sa 27.10.2007
Autor: lum_pi

Aufgabe
beweise, dass die folgende rekursiv definierte reihe [mm] a_{n}=g*a_{n-1} +d*a_{0} [/mm]  die folgende explizite darstellung [mm] a_{n}=(g^{n}+\bruch{1-g^{n}}{1-g}*d)*a_{0} [/mm] hat  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

hi leute, mir ist schon klar, dass man {n-1} für n einsetzten muss aber wie kommt man dann von der expliziten darstellung auf die rekusive?

danke schonmal für ne antwort.

        
Bezug
rekursiv definiere reihe: vollständige Induktion
Status: (Antwort) fertig Status 
Datum: 14:00 Sa 27.10.2007
Autor: Loddar

Hallo lum_pi,

[willkommenmr] !!


Um hier diese Identität von rekursive und expliziter Form zu zeigen, wirst Du wohl einen Nachweis mit vollständiger Induktion führen dürfen.

Zeige also, dass beide Darstellungen für $n \ = \ 0$ dieselben Werte haben (Induktionsanfang).

Im Induktionsschritt musst Du dann zeigen: [mm] $a_{n+1} [/mm] \ = \ [mm] \left(g^{n+1}+\bruch{1+g^{n+1}}{1-g}*d\right)*a_0$ [/mm] .

Dabei verwenden wir auch die rekursive Darstellung:
[mm] $$a_{n+1} [/mm] \ = \ [mm] g*\red{a_n}+d*a_0 [/mm] \ = \ [mm] g*\red{\left(g^n+\bruch{1+g^n}{1-g}*d\right)*a_0}+d*a_0 [/mm] \ = \ ...$$
Nun weiter umformen, um auf o.g. Term für [mm] $a_{n+1}$ [/mm] zu kommen.


Gruß
Loddar


Bezug
                
Bezug
rekursiv definiere reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:08 Sa 27.10.2007
Autor: lum_pi

ok vielen dank für den hinweis, dann werd ich das mal versuchen.
ich habe zuerst gedacht, es reicht, wenn man in die explizite darstellung [mm] a_{n} [/mm] für n -> n-1 einsetzt und dann auflöst, sodass man wieder auf die rekursive darstellung kommt (nur das auflösen ist ein problem...)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]