www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Matrizenrekursive Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Matrizen" - rekursive Folge
rekursive Folge < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

rekursive Folge: Ansatz falsch?
Status: (Frage) beantwortet Status 
Datum: 19:59 Fr 10.03.2017
Autor: Franzi17

Aufgabe
Sei (an)n∈N die durch [mm] a_1 [/mm] = [mm] a_2 [/mm] = 1 und [mm] a_n [/mm] = 2a_(n−1) −3a_(n−2) rekursiv definierte Folge. Finden Sie einen Ausdruck für an für alle n ∈N analogzum Ausdruck für das n-te Folgenglied der Fibonaccifolge.

Hallo!
Ich habe einen Ansatz, komme aber leider ab einen bestimmten Punkt nicht mehr weiter. Ich wäre froh, mit würde jemand sagen, ob der Ansatz komplett falsch ist oder woran es gegebenenfalls scheitert... Danke! :)

Ich habe damit begonnen:

[mm] F_n [/mm] =   [mm] \begin{pmatrix} Fn \\ Fn-1 \end{pmatrix} [/mm]  = [mm] A*\begin{pmatrix} Fn-1 \\ Fn-2 \end{pmatrix} [/mm]
= [mm] A^{n-2}*\begin{pmatrix} F2 \\ F1 \end{pmatrix} [/mm]



wobei A =
[mm] \begin{pmatrix} 2 & -3 \\ 1 & 0 \end{pmatrix} [/mm]

Macht das soweit Sinn?

dann wollte ich A^(n-2) berechnen, um einen allgemeinen Ausdruck für Fn zu finden.
Diese wollte ich über die Eigenwerte tun.
Jedoch komme ich auf imaginäre EWs,
nämlich
1 + i [mm] \wurzel{2} [/mm]
und
1 - i [mm] \wurzel{2} [/mm]

und damit auf D =

[mm] \begin{pmatrix} 1 & - \wurzel{2} \\ \wurzel{2} & 1 \end{pmatrix} [/mm]

Ich wollte
A^(n-2) = S^(-1)*D^(n-2)*S

berechnen.
Aber ich kann ja bei D in diesem Fall nicht "nur" die Diagonalelemente potenzieren..

Bitte um Hilfe!!



        
Bezug
rekursive Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 20:09 Sa 11.03.2017
Autor: Fulla


> Sei (an)n∈N die durch [mm]a_1[/mm] = [mm]a_2[/mm] = 1 und [mm]a_n[/mm] = 2a_(n−1)
> −3a_(n−2) rekursiv definierte Folge. Finden Sie einen
> Ausdruck für an für alle n ∈N analogzum Ausdruck für
> das n-te Folgenglied der Fibonaccifolge.
> Hallo!
> Ich habe einen Ansatz, komme aber leider ab einen
> bestimmten Punkt nicht mehr weiter. Ich wäre froh, mit
> würde jemand sagen, ob der Ansatz komplett falsch ist oder
> woran es gegebenenfalls scheitert... Danke! :)


Hallo Franzi,

scheinbar ist dein Ansatz ähnlich dem, der auch auf []Wikipedia gezeigt wird.
Wenn du das ganz analog durchrechnest, kommst du auch auf das richtige Ergebnis.

Beachte dabei Folgendes:
Die Notation dort ist
   [mm]\vektor{a_n \\ a_{n+1}}=A^n\cdot\vektor{a_0\\ a_1}[/mm]
und in dem Fall ist
    [mm]A=\pmat{ 0 & 1 \\ -3 & 2 } [/mm]

Problem: Deine Folge beginnt mit [mm]a_1[/mm].
Lösung: Berechne [mm]a_0[/mm] gemäß [mm]a_2=2a_1-3a_0[/mm]
(oder "bastle" etwas am [mm]n[/mm] rum, das sollte auch gehen)


> Ich habe damit begonnen:

>

> [mm]F_n[/mm] = [mm]\begin{pmatrix} Fn \\ Fn-1 \end{pmatrix}[/mm] =
> [mm]A*\begin{pmatrix} Fn-1 \\ Fn-2 \end{pmatrix}[/mm]
> =
> [mm]A^{n-2}*\begin{pmatrix} F2 \\ F1 \end{pmatrix}[/mm]

>
>
>

> wobei A =
> [mm]\begin{pmatrix} 2 & -3 \\ 1 & 0 \end{pmatrix}[/mm]

>

> Macht das soweit Sinn?

>

> dann wollte ich A^(n-2) berechnen, um einen allgemeinen
> Ausdruck für Fn zu finden.
> Diese wollte ich über die Eigenwerte tun.
> Jedoch komme ich auf imaginäre EWs,
> nämlich
> 1 + i [mm]\wurzel{2}[/mm]
> und
> 1 - i [mm]\wurzel{2}[/mm]

[ok] Das sind auch die Eigenwerte der Matrix, die ich oben angegeben habe.

> und damit auf D =

>

> [mm]\begin{pmatrix} 1 & - \wurzel{2} \\ \wurzel{2} & 1 \end{pmatrix}[/mm]

>

> Ich wollte
> A^(n-2) = S^(-1)*D^(n-2)*S

>

> berechnen.
> Aber ich kann ja bei D in diesem Fall nicht "nur" die
> Diagonalelemente potenzieren..

Der Trick hier ist ja gerade, dass du eine "echte" Diagonlamatrix nimmst, die du leicht potenzieren kannst.
Nimm doch
    [mm]D=\pmat{ 1-\sqrt 2i & 0 \\ 0 & 1+\sqrt 2i } [/mm]
und berechne [mm]T[/mm], wobei die Spalten von [mm]T[/mm] die Eigenvektoren von [mm]A[/mm] sind.

Danach formst du [mm]\vektor{a_n \\ a_{n+1}}=A^n\cdot\vektor{a_0\\ a_1}=TD^nT^{-1}\cdot\vektor{a_0\\ a_1}[/mm] um und die obere Zeile der Gleichung ist dann deine gesuchte Formel.

Hinweis: Du wirst bis zum Schluss imaginäre Terme haben. Bei der konkreten Berechnung weiterer Folgenglieder fallen diese aber dann weg.


Lieben Gruß,
Fulla

Bezug
                
Bezug
rekursive Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:00 Sa 11.03.2017
Autor: Franzi17

Hallo Fulla!
Vielen Dank für deine Antwort!
Mir war nicht bewusst, dass ich die Matrix D so wählen kann?
Ich dachte bei imaginären EWs (s plus/minus i*t) ist die Normalform
[mm] \begin{pmatrix} s & -t \\ t & s \end{pmatrix} [/mm]
Wie komme ich auf die Matrix die du mir aufgeschrieben hast?
Vielen Dank! :)

Bezug
                        
Bezug
rekursive Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 01:30 So 12.03.2017
Autor: Fulla


> Hallo Fulla!
> Vielen Dank für deine Antwort!
> Mir war nicht bewusst, dass ich die Matrix D so wählen
> kann?

Hallo Franzi,

warum sollte das nicht gehen? Wenn komplexe Matrizen nicht "verboten" sind, ist das doch kein Problem...

> Ich dachte bei imaginären EWs (s plus/minus i*t) ist die
> Normalform
> [mm]\begin{pmatrix} s & -t \\ t & s \end{pmatrix}[/mm]

Bei diesem Ansatz ist es essentiell, dass [mm]D[/mm] auch tatsächlich Diagonalgestalt hat (wegen dem Potenzieren).

> Wie komme ich auf die Matrix die du mir aufgeschrieben
> hast?

Meinst du [mm]A[/mm]?
Genauso, wie du auf deine Matrix gekommen bist.
Du fängst an mit
    [mm]\pmat{. \ & . \ \\ . \ & . \ }\vektor{a_0\\ a_1}=\vektor{a_1 \\ a_2}[/mm]
und füllst die Einträge der Matrix. Die 0 und 1 in der oberen Zeile sollten klar sein. In der untern Zeile fließt die Rekursionsvorschrift ein: Wie musst du [mm]a_0[/mm] und [mm]a_1[/mm] kombinieren, damit [mm]a_2[/mm] rauskommt?

Oder meinst du $D$? Das sind einfach die Eigenwerte auf der Diagonalen.

> Vielen Dank! :)

Gerne!

Lieben Gruß,
Fulla

Bezug
        
Bezug
rekursive Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:44 Do 16.03.2017
Autor: Franzi17

Vielen Dank! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]