www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Induktionrekursive Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Induktion" - rekursive Folge
rekursive Folge < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

rekursive Folge: Aufgabe 28
Status: (Frage) beantwortet Status 
Datum: 15:07 Mo 22.01.2007
Autor: Trapt_ka

ich kann leider die aufgabe im anhang nicht nachvollziehen vor allem gelint mir dei vollständige induktion nicht. dies ist eigentlich das einzige was ich nicht verstehe da keine lösung angegeben ist und ich leider gar nicht drauf komme wie ih die szu lösen bzw zu berenchnen habe.
wäre foh wenn ich eine beispielrechnung bekommen könnte
[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
rekursive Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 15:44 Mo 22.01.2007
Autor: Volker2

Hallo,

zunächst kannst Du mal versuchen den Grenzwert, falls er denn existiert, zu erraten, damit die ganze Aufgabe etwas konkreter wird. Angenommen also [mm] a_\infty [/mm] ist ein Grenzwert zu einem STartwert [mm] a_0. [/mm] Dann gilt doch

[mm] a_\infty=a_{\infty+1}=\frac{1}{5}(a_\infty^2+4) [/mm]

oder

[mm] a_\infty^2-5a_\infty+4=0 [/mm]

d.h. [mm] a_\infty=\frac{1}{2}(5\pm [/mm] 3). Falls also der Grenzwert zu gegebenem [mm] a_0 [/mm] existiert, so ist er entweder 1 oder 4. Insbesondere ist für [mm] a_0=4 [/mm] die Folge konstant gleich 4 und da ist alles klar. Für [mm] a_0=2 [/mm] ist der angegebene Tipp zu verwenden. Damit weißt Du, dass die Folge monoton fällt. Da sie trivialerweise durch 0 von unten beschränkt ist, muss sie auch konvergieren und zwar gegen einen Grenzwert, der zwischen 0 und 2 liegt. D.h. für [mm] a_0=2 [/mm] konvergiert die Folge gegen 1, denn das war ja der einzige mögliche Grenzwert zwischen 0 und 2, wie wir ganz am Anfang gesehen hatten.

Volker



Bezug
                
Bezug
rekursive Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:09 Di 23.01.2007
Autor: Trapt_ka

ja so weit war es mir klar aber ich komm einfach nicht auf die vollständige induktion die in der aufgabe angesprochen ist. des weitern ist den diese vollständige induktion von beduetung oder eher nicht.
wäre net wenn mir einer die vollständige induktion mal skizzieren könnte
da ich mit  V.I. en grosses Problem habe

Bezug
                        
Bezug
rekursive Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 09:40 Mi 24.01.2007
Autor: moudi

Hallo Traptka

Es steht ja schon fast alles hier. Sei [mm] $a_0=2$ [/mm] und wir zeigen mit Induktion nach n, dass [mm] $a_{n}
Induktionsverankerung: n=1 Es gilt [mm] $a_1=8/5<2=a_0$ [/mm]

Induktionsschritt: Die Behautpung gelte für n, darf also annehmen, dass [mm] $a_{n} Jetzt muss ich die Behauptung für n+1 zeigen, ich muss also zeigen, dass dann auch [mm] $a_{n+1}
Aus dem Text entnimmt man [mm] $a_{n+1}-a_{n}=\frac15 (a_{n}-a_{n-1})(a_{n}+a_{n-1})$. [/mm]
Wegen der Induktionsvoraussetzung ist der erste Fakor rechts negativ, während der zweite Faktor positiv ist, daher ist auch die linke Seite negativ, was zu beweisen war.

mfG Moudi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]