www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgorithmen und Datenstrukturenrekursive Zeitgleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Algorithmen und Datenstrukturen" - rekursive Zeitgleichung
rekursive Zeitgleichung < Algor.+Datenstr. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

rekursive Zeitgleichung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:00 Di 11.11.2014
Autor: gismot

Aufgabe 1
Durch iteriertes Einsetzen eine obere Schranke finden
es gilt T(n)=O(1) für n<=1

T(n)=T(n-a)+n
wobei a Element N a >=1 eine Konstante ist

Aufgabe 2
Durch iteriertes Einsetzen eine obere Schranke finden
es gilt T(n)=O(1) für n<=1
[mm] T(n/2)+n^2 [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo zusammen!

Ich hab mir BSP 1. z angeschaut, und habe als erstes einmal die Gelichung in sich selbst eingesetzt und komme auf:

T(n)=T(n-a)+n
1.   =T(((n-a)+n)-a)+n
2.   =T(((((n-a)+n)-a)+n)-a)+n
      =T(3n-3a)+n
3.   =T(((3n-3a)+n)-a)+n
      =T(4n-4a)+n

Allgemein ergibt das für mich folgende Bildungsregel:
T(kn-ka)+n

laut dem post aber https://matheraum.de/read?t=312129, stimmts nicht.

Ich würde dann wie folgt weitergehen:
ein c suchen das T(n) erfüllt (Abbruchbedingung)und dies in die Formel einsetzen.
=T(bla) kann ich mit O(1) gleichsetzen+ was mir dann übrigbleit-Konstanten wäre meine Obere Schranke

Das es ein c gibt wäre dann mein Beweis.

Meine Fragen:
Stimmt meine allgemeine Form oder die vom Fragesteller oder die die zwischendurch gepostet wurde?

Reicht es wenn ich ein c finde das die Gleichung erfüllt as beweis, das mein Endergebniss die Obere Schranke ist

Zu B hätte ich den Ansatz
T(n) [mm] \le [/mm] c*n*logn für c >0
[mm] T(n)=6T(n/2)+n^2 [/mm] n [mm] \le [/mm] 1

[mm] T(n)=6T(n/2)+n^2 [/mm]
[mm] \le 6(cn/2log(n/2)+n^2 [/mm]     | log [mm] \equiv [/mm] log basis 6
[mm] =cnlog(n/2)+n^2 [/mm]   | log(n/2)=log(n)-log(2)
[mm] \le [/mm] cnlogn-cn+n | c>1
[mm] \equiv [/mm] cnlogn

Wie würde ich hier auf meine Obere Schranke kommen?



        
Bezug
rekursive Zeitgleichung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Fr 14.11.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]