www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebrarekursive folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - rekursive folge
rekursive folge < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

rekursive folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:16 So 07.05.2006
Autor: Janyary

Aufgabe 1
Eine Hefezellenkolonie benoetigt in der k-ten Generation [mm] (k\in\IN) [/mm] eine Flaeche von [mm] t_{k}cm^{2}. [/mm] Das wachstum der Kolonie sei durch die Gleichung
[mm] t_{k+3}=\bruch{3}{2}t_{k+2}-\bruch{11}{16}t_{k+1}+\bruch{3}{32}t_{k}+1 [/mm]
gegeben.

a) Geben Sie eine Matrix  [mm] A\in \IR^{3x3} [/mm] und einen Vektor [mm] b\in\IR^{3} [/mm] an, so dass fuer alle [mm] k\in \IN [/mm] gilt:
[mm] \vektor{t_{k+3} \\ t_{k+2} \\ t_{k+1}}=A*\vektor{t_{k+2} \\ t_{k+1} \\ t_{k}}+b [/mm]

Ist die Matrix A diagonalisierbar? Wenn ja, so geben sie eine Matrix S an, so dass [mm] S^{-1}AS [/mm] Diagonalform hat.

Aufgabe 2
b) Berechnen Sie den Flaechenbedarf [mm] t_{k} [/mm] fuer [mm] k\in\IN [/mm] falls [mm] t_{0}=t_{1}=t_{2}=0 [/mm] ist.

c) Gegen welchen Wert konvergiert die Folge [mm] t_{k} [/mm] (fuer k [mm] \to \infty) [/mm]
   (In Teil c) setzen wir nicht vorraus, dass [mm] t_{0}=t_{1}=t_{2}=0 [/mm] gilt.)

Hi leute,

also den teil a) hab ich bereits erledigt. ich bin mir nicht sicher ob er fuer b) und c) hilft, aber ich poste einfach mal das ergebnis.

A= [mm] \pmat{ \bruch{3}{2} & \bruch{-11}{16} & \bruch{3}{32}\\ 1 & 0 & 0 \\ 0 & 1 & 0 } [/mm]
[mm] b=\vektor{1\\0\\0} [/mm]

S= [mm] \pmat{ 1 & 9 & 1 \\ 2 & 12 & 4 \\ 4 & 16 & 16 } [/mm]

Eigenwerte sind [mm] \lambda_{1}=\bruch{1}{2}, \lambda_{2}=\bruch{1}{4}, \lambda_{3}=\bruch{3}{4} [/mm]

zu b)
ich denke ich muss meine rekursive folge in eine "normale" umwandeln. aber das gelingt mir einfach nicht. haette ich eine folge, die nur noch [mm] t_{k} [/mm] enthaelt, koennte ich sicher einfach den limes gegen unendlich laufen lassen und das ergebnis muesste dann der flaechenbedarf sein.
Aber wie gesagt ich komme einfach nicht auf diese folge, waere toll wenn vielleicht jemand ne idee haette.

zu c) ist wuerde ich meinen analog zu b) also auch wieder "normale" folge angeben und limes berechnen.

hoffe es kann jemand weiterhelfen.
LG Jany :)

        
Bezug
rekursive folge: Antwort
Status: (Antwort) fertig Status 
Datum: 17:31 So 07.05.2006
Autor: felixf

Hallo Jany!

> Eine Hefezellenkolonie benoetigt in der k-ten Generation
> [mm](k\in\IN)[/mm] eine Flaeche von [mm]t_{k}cm^{2}.[/mm] Das wachstum der
> Kolonie sei durch die Gleichung
>  
> [mm]t_{k+3}=\bruch{3}{2}t_{k+2}-\bruch{11}{16}t_{k+1}+\bruch{3}{32}t_{k}+1[/mm]
>  gegeben.
>  
> a) Geben Sie eine Matrix  [mm]A\in \IR^{3x3}[/mm] und einen Vektor
> [mm]b\in\IR^{3}[/mm] an, so dass fuer alle [mm]k\in \IN[/mm] gilt:
>  [mm]\vektor{t_{k+3} \\ t_{k+2} \\ t_{k+1}}=A*\vektor{t_{k+2} \\ t_{k+1} \\ t_{k}}+b[/mm]
>  
> Ist die Matrix A diagonalisierbar? Wenn ja, so geben sie
> eine Matrix S an, so dass [mm]S^{-1}AS[/mm] Diagonalform hat.
>  b) Berechnen Sie den Flaechenbedarf [mm]t_{k}[/mm] fuer [mm]k\in\IN[/mm]
> falls [mm]t_{0}=t_{1}=t_{2}=0[/mm] ist.
>  
> c) Gegen welchen Wert konvergiert die Folge [mm]t_{k}[/mm] (fuer k
> [mm]\to \infty)[/mm]
>     (In Teil c) setzen wir nicht vorraus, dass
> [mm]t_{0}=t_{1}=t_{2}=0[/mm] gilt.)
>  Hi leute,
>  
> also den teil a) hab ich bereits erledigt. ich bin mir
> nicht sicher ob er fuer b) und c) hilft, aber ich poste
> einfach mal das ergebnis.
>  
> A= [mm]\pmat{ \bruch{3}{2} & \bruch{-11}{16} & \bruch{3}{32}\\ 1 & 0 & 0 \\ 0 & 1 & 0 }[/mm]
>  
> [mm]b=\vektor{1\\0\\0}[/mm]
>  
> S= [mm]\pmat{ 1 & 9 & 1 \\ 2 & 12 & 4 \\ 4 & 16 & 16 }[/mm]
>  
> Eigenwerte sind [mm]\lambda_{1}=\bruch{1}{2}, \lambda_{2}=\bruch{1}{4}, \lambda_{3}=\bruch{3}{4}[/mm]

Ich habe das nicht nachgerechnet.

> zu b)
>  ich denke ich muss meine rekursive folge in eine "normale"
> umwandeln.

Genau.

> aber das gelingt mir einfach nicht. haette ich
> eine folge, die nur noch [mm]t_{k}[/mm] enthaelt, koennte ich sicher
> einfach den limes gegen unendlich laufen lassen und das
> ergebnis muesste dann der flaechenbedarf sein.

Du sollst nicht den Grenzwert ausrechnen sondern den Bedarf zum Zeitpunkt $n [mm] \in \IN$. [/mm]

> zu c) ist wuerde ich meinen analog zu b) also auch wieder
> "normale" folge angeben und limes berechnen.

Allgemein: Wenn $x$ der Startvektor ist, dann ist der Vektor zum Zeitpunkt 1 gleich $A x + b$. Zum Zeitpunkt 2 gleich [mm] $A^2 [/mm] x + A b + b$. Zum Zeitpunkt 3 gleich [mm] $A^3 [/mm] x + [mm] A^2 [/mm] b + A b + b = [mm] A^3 [/mm] x + [mm] (A^2 [/mm] + A + E) b$.

Per Induktion kann man nun zeigen: Zum Zeitpunkt $n$ ist der Vektor [mm] $\vector{t_{n+2} \\ t_{n+1} \\ t_n} [/mm] = [mm] A^n [/mm] x + [mm] (A^{n+1} [/mm] + [mm] \dots [/mm] + [mm] A^0) [/mm] b$. Bleibt natuerlich die Frage: Wie rechnet man das nun aus?

Dazu brauchst du die Diagonalisierbarkeit! Es ist [mm] $A^n [/mm] = S [mm] S^{-1} A^n [/mm] S [mm] S^{-1} [/mm] = S [mm] (S^{-1} [/mm] A S [mm] )^n S^{-1}$. [/mm] Und [mm] $(S^{-1} [/mm] A S [mm] )^n$ [/mm] kannst du leicht ausrechnen.

Damit solltest du nun b) und c) loesen koennen.

LG Felix


Bezug
                
Bezug
rekursive folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:56 Mo 08.05.2006
Autor: Janyary

hallo felix

danke sehr du hast mich wieder einmal auf die richtige faehrte gefuehrt. habe sogar in meinem vorlesungsskript auch etwas dazu gefunden, also wieder einmal ein riesig grosses dankeschoen :)

LG Jany :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]