www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und Geometrierelativ kompakt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Topologie und Geometrie" - relativ kompakt
relativ kompakt < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

relativ kompakt: aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:52 Do 19.08.2010
Autor: nikita

Hallo! Ich habe folgende Aufgabe zu lösen: Sei X topologischer Hausdorffraum. Dann gilt: [mm] A\subset [/mm] B [mm] \subset [/mm] X, B kompakt [mm] \Rightarrow [/mm] A ist relativ kompakt.

Ich habe es folgendermaßen gelöst: Was ich zeigen muss, ist die Kompaktheit von [mm] \overline{A}. [/mm] Sei also  [mm] \bigcup_{i\in I}U_{i} [/mm] eine offene Überdeckung von [mm] \overline{A}. [/mm] Dann ist [mm] (X\setminus \overline{A})\cup \bigcup_{i\in I}U_{i} [/mm] eine offene Überdeckung von B und da B kompakt ist, existiert eine endliche Teilüberdeckung. Da [mm] \overline{A}\subset [/mm] B existiert also auch eine endliche Teilüberdeckung von [mm] \overline{A}. [/mm]
Das wäre meine Überlegung. Was mich aber verunsichert, ist die Tatsache, dass bei meiner Argumentation nirgendwo die Separiertheit von dem Raum X auftaucht. Wo liegt also mein Fehler?
Ein Tipp würde mich freuen!

        
Bezug
relativ kompakt: Antwort
Status: (Antwort) fertig Status 
Datum: 12:39 Do 19.08.2010
Autor: max3000

Deine Argumentation ist eigentlich genau richtig.
So ähnlich habe ich den Beweis auch in meinem Hefter stehen und da haben wir auch nicht die Separiertheit explizit ausgenutzt.

Also irgendeinen Beweisschritt kannst du wahrscheinlich nicht so machen, wenn der Raum nicht separiert wäre. Seh aber leider auch grad nicht genau welcher.


Bezug
        
Bezug
relativ kompakt: Antwort
Status: (Antwort) fertig Status 
Datum: 13:17 Do 19.08.2010
Autor: fred97


> Hallo! Ich habe folgende Aufgabe zu lösen: Sei X
> topologischer Hausdorffraum. Dann gilt: [mm]A\subset[/mm] B [mm]\subset[/mm]
> X, B kompakt [mm]\Rightarrow[/mm] A ist relativ kompakt.
>  
> Ich habe es folgendermaßen gelöst: Was ich zeigen muss,
> ist die Kompaktheit von [mm]\overline{A}.[/mm] Sei also  
> [mm]\bigcup_{i\in I}U_{i}[/mm] eine offene Überdeckung von
> [mm]\overline{A}.[/mm] Dann ist [mm](X\setminus \overline{A})\cup \bigcup_{i\in I}U_{i}[/mm]
> eine offene Überdeckung von B und da B kompakt ist,
> existiert eine endliche Teilüberdeckung. Da
> [mm]\overline{A}\subset[/mm] B existiert also auch eine endliche
> Teilüberdeckung von [mm]\overline{A}.[/mm]
>  Das wäre meine Überlegung. Was mich aber verunsichert,
> ist die Tatsache, dass bei meiner Argumentation nirgendwo
> die Separiertheit von dem Raum X auftaucht

Doch, Du hast es nur nicht gemerkt !


> . Wo liegt also  mein Fehler?

Nirgendwo.  Du hast benutzt:  

              (*) $ [mm] \overline{A}\subset [/mm]  B$

Aber warum gilt das ?

Wir haben:  $ [mm] A\subset [/mm] $ B $ [mm] \subset [/mm] $ X,    und  B kompakt

Dann ist zunächst:

             (**)   [mm]\overline{A} \subset \overline{B} [/mm]

In separierten topologischen Räumen sind kompakte Mengen abgeschlossen ! (in allg. top. Räumen ist das i.a. nicht so)

Also:

           [mm]B= \overline{B} [/mm].

Aus (**) folgt dann (*).


FRED



> Ein Tipp würde mich freuen!  


Bezug
                
Bezug
relativ kompakt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:18 Do 19.08.2010
Autor: nikita

Danke! Das hatte ich übersehen :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]