www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikrelative-/Einzelwahrscheinlich
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stochastik" - relative-/Einzelwahrscheinlich
relative-/Einzelwahrscheinlich < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

relative-/Einzelwahrscheinlich: Aufg. Grundlage v. Stochastik
Status: (Frage) beantwortet Status 
Datum: 12:52 So 22.01.2006
Autor: Phoney

Aufgabe
Bei einer Verkehrszählung wurde an einer Kontrolle festgestellt, dass 25% der vorbeifahrenden Fahrzeuge LKWs waren, 55% PKWs, 5% Mofas, 10% Motorräder und 5% sonstige Fahrzeuge.
a) Insgesamt wurden 750 Fahrzeuge gezählt. Berechnen Sie die Häufigkeiten und die Einzelwahrscheinlichkeiten.

Guten Morgen.
Wir haben gerade mit Stochastik angefangen und die Grundlagen sind vom Wissen her beschränkt. Wir hatten halt schon so Definitionen wie relative Häufigkeiten und Wahrscheinlichkeit. Leider weiß ich hier überhaupt nicht, was gemeint ist.
Eine gute Sache, die man machen kann, ist erst einmal auszurechnen, wie viele LKWs, PKWs,... das von 750 Fahrzeugen waren.

55% PKWs von 750 = 412,5 (komisch - Kommazahlen)
25% LKWs von 750 = 187,5
10% Motorräder von 750 = 75
5% Mofas von 750 = 37,5
5% Sonst. von 750 = 37,5

(Das muss die Antwort auf die Häufigkeiten sein? Weil:

einfach so auf Verdacht die relative Häufigkeit ausgerechnet

[mm] h_E= \bruch{H_E}{n} [/mm]

Für PKWs : [mm] h_E= \bruch{412,5}{750} [/mm] = 55%. Diese Sachen sind also in der Aufgabe gegeben)

Zweiter Teil der Aufgabe - Einzelwahrscheinlichkeiten
Und was sind nun die Einzelwahrscheinlichkeiten, dass ein bestimmtes Fahrzeug eben an dieser Stelle vorbeifährt? Z.B. das gelbe Auto von Herrn XYZ.

P = [mm] \bruch{Anzahl aller guenstigen Fälle}{Anzahl der Moeglichen Faelle}=\bruch{der bestimmte PKW von XYZ}{Anzahl der Moeglichen PKW-Faelle} [/mm] = [mm] \bruch{der bestimmte PKW von XYZ}{750- Anzahl PKW} [/mm] = [mm] \bruch{1}{750- 412,5} [/mm] =0,0029 = 0,3%.

Das war wahrscheinlich total falsch - würde jedenfalls mein Verständnis zur Stochastik widerspiegeln.

Grüße Phoney

        
Bezug
relative-/Einzelwahrscheinlich: Antwort
Status: (Antwort) fertig Status 
Datum: 15:43 So 22.01.2006
Autor: Quedrum


> Bei einer Verkehrszählung wurde an einer Kontrolle
> festgestellt, dass 25% der vorbeifahrenden Fahrzeuge LKWs
> waren, 55% PKWs, 5% Mofas, 10% Motorräder und 5% sonstige
> Fahrzeuge.
>  a) Insgesamt wurden 750 Fahrzeuge gezählt. Berechnen Sie
> die Häufigkeiten und die Einzelwahrscheinlichkeiten.
>  
> 55% PKWs von 750 = 412,5 (komisch - Kommazahlen)
>  25% LKWs von 750 = 187,5
> 10% Motorräder von 750 = 75
>  5% Mofas von 750 = 37,5
>  5% Sonst. von 750 = 37,5
>  
> (Das muss die Antwort auf die Häufigkeiten sein? Weil:
>  

Genau, das ist die relative Häufigkeit. Wenn die richtig gezählt hätten, darf keine Kommzahl rauskommen.
Wenn du z.B. insgesamt 760 Fahrzeuge nimmst, kommt immer ein gerader Wert heraus.

>  
> Zweiter Teil der Aufgabe - Einzelwahrscheinlichkeiten
>  Und was sind nun die Einzelwahrscheinlichkeiten, dass ein
> bestimmtes Fahrzeug eben an dieser Stelle vorbeifährt? Z.B.
> das gelbe Auto von Herrn XYZ.

Es kommt darauf an, wie ihr das genau definiert habt. Was habt ihr denn da in eurem Aufschrieb genau stehen?
Es könnte z.B. sein, mit welcher Wahrscheinlichkeit ist der gelbe PKW von Herr Schmidt unter den vorbeifahrenden PKW's

Dann stimmt deine Rechnung nicht ganz.

Die Anzahl der Möglichen PKW-Fälle ist ja dann genau 412,5 und nicht das Gegenteil davon.

Also 1/412.5 = 0.24%
Bedeutet: Mit einer Wahrscheinlichkeit von 0.24% ist Herr Schmidt bei den PKW's mitgefahren.

>  
> P = [mm]\bruch{Anzahl aller guenstigen Fälle}{Anzahl der Moeglichen Faelle}=\bruch{der bestimmte PKW von XYZ}{Anzahl der Moeglichen PKW-Faelle}[/mm]
> = [mm]\bruch{der bestimmte PKW von XYZ}{750- Anzahl PKW}[/mm] =
> [mm]\bruch{1}{750- 412,5}[/mm] =0,0029 = 0,3%.
>  
> Das war wahrscheinlich total falsch - würde jedenfalls mein
> Verständnis zur Stochastik widerspiegeln.

Es ist falsch aber nicht total falsch. :-)

> Grüße Phoney

Gruß Quedrum

Bezug
                
Bezug
relative-/Einzelwahrscheinlich: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:00 So 22.01.2006
Autor: Phoney

Hi.

> > Zweiter Teil der Aufgabe - Einzelwahrscheinlichkeiten
>  >  Und was sind nun die Einzelwahrscheinlichkeiten, dass
> ein
> > bestimmtes Fahrzeug eben an dieser Stelle vorbeifährt? Z.B.
> > das gelbe Auto von Herrn XYZ.
>  
> Es kommt darauf an, wie ihr das genau definiert habt. Was
> habt ihr denn da in eurem Aufschrieb genau stehen?
>  Es könnte z.B. sein, mit welcher Wahrscheinlichkeit ist
> der gelbe PKW von Herr Schmidt unter den vorbeifahrenden
> PKW's

Im Buch stand aber tatsächlich 750. Diese Einzelwahrscheinlichkeiten haben wir gar nicht definiert. War ja mein Problem.

Trotzdem hat mir deine Antwort schon viel geholfen, da ich nun zumindest weiß, wie man für den Fall vom PKW des Herrn Schmidt rangeht.

Vielen Dank!

Grüße,
Phoney

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]