www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichenrelative Extrema
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - relative Extrema
relative Extrema < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

relative Extrema: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:42 Di 11.07.2006
Autor: sali

Aufgabe
Die Funktion f mit f(x,y) = [mm] x^3 -3(x^2)y [/mm] + [mm] 3x(y^2) [/mm] + [mm] y^3 [/mm] - 3x -21y soll auf relative Extrema untersucht werden

bei der Aufgabe kommt raus:
z.B. P1: [mm] f_{xx}f_{yy} [/mm] = 6*30 [mm] >(-6)^2 [/mm] = [mm] (f_{xy})^2 [/mm]
  
       mit Minimum in P1 mit  f(3;2) = -34

soweit ist eigentlich alles klar, ich weiss nur nicht wie man auf die -34 kommt, hab viele Rechnungen versucht, bin jedoch imer auf andere Ergebnisse gekommen..
Wäre schön wenn mir jemand helfen kann! vielen dank!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
relative Extrema: in Fkt.-Gleichung einsetzen
Status: (Antwort) fertig Status 
Datum: 18:47 Di 11.07.2006
Autor: Loddar

Hallo sali!


Setze diese beiden Werte einfach mal in die Funktionsgleichung ein:

[mm] $f(\red{3},\blue{2}) [/mm] \ = \ [mm] \red{3}^3 -3*\red{3}^2*\blue{2} [/mm] + [mm] 3*\red{3}*\blue{2}^2 +\blue{2}^3 [/mm] - [mm] 3*\red{3} -21*\blue{2} [/mm] \ = \ ... \ = \ -34$


Gruß
Loddar


Bezug
                
Bezug
relative Extrema: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:57 Di 11.07.2006
Autor: sali

oh super! vielen dank, ich habe so lange rumgerätselt...

habs noch bei anderen Aufgaben gemacht und bin aufs richtige Ergebnis gekommen. danke!

Bezug
        
Bezug
relative Extrema: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:52 Di 11.07.2006
Autor: sali

ach ja, ich habe noch eine kurze Frage zum Thema partielle Ableitung.

Mir ist klar dass ich z.B. y= konst. setze wenn ich [mm] f_x [/mm] bekommen möchte.
Was mache ich aber bei einem Ausdruck wie z.B. :

2(e^xy) ?

kommt dann 2 [mm] (e^x(y^2)) [/mm] raus?

und bei [mm] e^y [/mm] würde ich sagen es bleibt [mm] e^y [/mm]

stimmt das?

vielen Dank schonmal...

Bezug
                
Bezug
relative Extrema: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:00 Di 11.07.2006
Autor: sali

oh, da hab ich was falsch geschrieben, ich meine als Lösung:

[mm] e^{x*(y^2)} [/mm]

also e hoch ( x mal [mm] y^2) [/mm]

weiss immer nicht wie man das richtig schreibt..

Bezug
                
Bezug
relative Extrema: Korrektur: Kettenregel
Status: (Antwort) fertig Status 
Datum: 19:09 Di 11.07.2006
Autor: Loddar

Hallo sali!


Nach welcher Variablen möchtest Du denn das ableiten? Aber eigentlich egal ...

Du musst hier die MBKettenregel anwenden:

[mm] $f_x(x,y) [/mm] \ = \ [mm] e^{x*y}*(x*y)' [/mm] \ = \ [mm] e^{x*y}*y [/mm] \ = \ [mm] y*e^{x*y}$ [/mm]

[mm] $f_y(x,y) [/mm] \ = \ [mm] e^{x*y}*(x*y)' [/mm] \ = \ [mm] e^{x*y}*x [/mm] \ = \ [mm] x*e^{x*y}$ [/mm]


Gruß
Loddar


Bezug
                        
Bezug
relative Extrema: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:18 Di 11.07.2006
Autor: sali

ja du hast recht, da hab ich mich vertan.. also leite ich so einen Ausdruck ganz normal ab, lass aber halt nur die jeweilige variableohne abzuleiten stehen.
ok, habs verstanden denk ich, vielen dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]