www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale Funktionenrev. Kurvendiskussion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Ganzrationale Funktionen" - rev. Kurvendiskussion
rev. Kurvendiskussion < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

rev. Kurvendiskussion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:09 Sa 17.05.2008
Autor: green_apple

Aufgabe
Eine Funktion der Form [mm] f(x)=ax^4+bx^2+c [/mm] geht durch den Punkt (-1|1), berührt die x-Achse, hat am Punkt (0|1) ein relatives Maximum, berührt wiederum die x-Achse und geht durch den Punkt (1|1). Bestimmen Sie a, b und c.

Hallo,
c=1 hab ich berechnet, indem ich den Punkt (0|1) eingesetzt hab. Durch Einsetzen vom Punkt (-1|1) bzw. (1|1) kam ich auf b = -a
Erste Ableitung bringt mir jetzt nicht wirklich was (von den Minima an der x-Achse weiß ich ja keine x-Werte). Wendepunkte hab ich auch nicht... wie komme ich weiter?
Vielen Dank im Voraus!

        
Bezug
rev. Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:38 Sa 17.05.2008
Autor: Sigrid

Hallo green_apple,

> Eine Funktion der Form [mm]f(x)=ax^4+bx^2+c[/mm] geht durch den
> Punkt (-1|1), berührt die x-Achse, hat am Punkt (0|1) ein
> relatives Maximum, berührt wiederum die x-Achse und geht
> durch den Punkt (1|1). Bestimmen Sie a, b und c.
>  Hallo,
>  c=1 hab ich berechnet, indem ich den Punkt (0|1)
> eingesetzt hab. Durch Einsetzen vom Punkt (-1|1) bzw. (1|1)
> kam ich auf b = -a

[ok]

>  Erste Ableitung bringt mir jetzt nicht wirklich was (von
> den Minima an der x-Achse weiß ich ja keine x-Werte).

Du kannst den x-Wert mit Hilfe der 1. Ableitung in Abhängigkeit von a und b ausrechnen und dann in die Funktionsgleichung einsetzen. Dann bekommst Du eine weitere Gleichung.

Kommst Du jetzt weiter?

Gruß
Sigrid

> Wendepunkte hab ich auch nicht... wie komme ich weiter?
>  Vielen Dank im Voraus!


Bezug
                
Bezug
rev. Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:04 Sa 17.05.2008
Autor: green_apple

Hallo Sigrid,

> Du kannst den x-Wert mit Hilfe der 1. Ableitung in
> Abhängigkeit von a und b ausrechnen und dann in die
> Funktionsgleichung einsetzen. Dann bekommst Du eine weitere
> Gleichung.
>  
> Kommst Du jetzt weiter?

also löse ich [mm] 4ax^3+2bx=0 [/mm] nach x auf und setze den wert in die Funktionsgleichung ein? Dann hab ich aber trotzdem keinen y-Wert für diese Gleichung oder? :(

Bezug
                        
Bezug
rev. Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:32 Sa 17.05.2008
Autor: Sigrid

Hallo green_apple

> Hallo Sigrid,
>  
> > Du kannst den x-Wert mit Hilfe der 1. Ableitung in
> > Abhängigkeit von a und b ausrechnen und dann in die
> > Funktionsgleichung einsetzen. Dann bekommst Du eine weitere
> > Gleichung.
>  >  
> > Kommst Du jetzt weiter?
>  
> also löse ich [mm]4ax^3+2bx=0[/mm] nach x auf und setze den wert in
> die Funktionsgleichung ein?

genau

> Dann hab ich aber trotzdem  keinen y-Wert für diese Gleichung oder? :(

Doch hast Du. Du weißt ja, dass die Kurve die x-Achse berührt. Also ist der Funktionswert 0.

Gruß
Sigrid


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]