www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebraschiefsymmetrische Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - schiefsymmetrische Matrix
schiefsymmetrische Matrix < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

schiefsymmetrische Matrix: Frage
Status: (Frage) beantwortet Status 
Datum: 19:21 Mo 13.12.2004
Autor: IKE

Hallo,

ich komme bei einer Aufgabe nicht weiter, die da lautet:

Zu jeder schiefsymmetrischen Matrix A [mm] \in \IR^{3,3} [/mm] gibt es genau einen Vektor a [mm] \in \IR^{3} [/mm] mit A * x = a [mm] \times [/mm] x wobei a [mm] \times [/mm] x das Kreuzprodukt im [mm] \IR^{3} [/mm] darstellt.

ich bin dabei bis jetzt nur auf die Ide gekommen, das es vielleicht über die Determinante und das Kreuzprodukt klappen könnte. Kann ich die beiden denn einfach so gleichsetzten, oder ist das verboten??

Vielen Dank schonmal für die Hilfe.

mfg IKE

        
Bezug
schiefsymmetrische Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 14:10 Mi 15.12.2004
Autor: Julius

Hallo IKE!

Eine schiefsymmetrische Matrix $A [mm] \in \IR^{3,3}$ [/mm] hat die Form

$A = [mm] \begin{pmatrix} 0 & -a_{12} & a_{13} \\ a_{12} & 0 & -a_{23} \\ -a_{13} & a_{23} & 0 \end{pmatrix}$. [/mm]

(Warum?)

Rechne jetzt mal $A [mm] \cdot [/mm] x$ aus.

Wie musst du nun $a$ setzen, damit dies gleich $a [mm] \times [/mm] x$ ist?

Liebe Grüße
Julius


Bezug
                
Bezug
schiefsymmetrische Matrix: Idee
Status: (Frage) beantwortet Status 
Datum: 15:31 Mi 15.12.2004
Autor: IKE

Hallo Julius,

naja also wenn ich dann A * x nehme kommt ja  [mm] \pmat{ 0 & -a_{12}x_{2} & a_{13}x{3} \\ a_{12}x{1} & 0 & -a_{23}x_{3} \\ -a_{13}x_{1} & a_{23}x_{2} & 0 } [/mm] raus. Und wenn ich dann halt für a= [mm] \vektor{a_{1} \\ a_{2} \\ a_{3} } [/mm] wähle und dann das Kreuzprodukt bilde, dann müsste es doch hinkommen meiner meinung nach. Oder habe ich da noch etwas vergessen, bzw einen Denkfehler mit drin??

mfg IKE


Bezug
                        
Bezug
schiefsymmetrische Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 15:54 Mi 15.12.2004
Autor: Julius

Hallo IKE!

Also, das stimmt vorne und hinten nicht. Erstens muss $A [mm] \cdot [/mm] x$ ein Vektor sein und keine $3 [mm] \times [/mm] 3$-Matrix. Zweitens muss man $a$ anders wählen, schließlich müssen dort irgendwie die Koordinaten der Matrix $A$ (also [mm] $a_{12}$, $a_{13}$ [/mm] und [mm] $a_{23}$, [/mm] aber nicht notwendigerweise in dieser Reihenfolge) vorkommen.

Bitte ein neuer Versuch! :-)

Liebe Grüße
Julius

Bezug
                                
Bezug
schiefsymmetrische Matrix: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:54 Mi 15.12.2004
Autor: IKE

Hallo Julius,

also okay, das A * x ein Vektor der Form   [mm] a_{1}*x_{1}+a_{2}*x_{2}+......+a_{n}*x_{n} [/mm] ist habe ich nun rausbekommen, aber nun fehlt mir vollkommen eine Idee wie es denn mit a [mm] \times [/mm] x aussehen könnte.

mfg IKE

Bezug
        
Bezug
schiefsymmetrische Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:05 Mi 15.12.2004
Autor: IKE

Hallo nochmal,

vielen Dank für die Hilfestellung, bin nun mittlerweile drauf gekommen was falsh war und habe nun ein richtiges ergebnis raus.

mfg IKE

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]