www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisschwach*-Konvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionalanalysis" - schwach*-Konvergenz
schwach*-Konvergenz < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

schwach*-Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:27 Mo 08.12.2008
Autor: marymary

Aufgabe
Sei X ein endlichdimensionaler normierter Raum. Zeige, dass die schwach*-Konvergenz auf X' mit der Normkonvergenz übereinstimmt (Hinweis: Benutze eine Basis)

Das ist mir bisher eingefallen dazu:

Normkonvergenz impliziert schwach*-Konvergenz, das weiß ich schon aus der Vorlesung.

X endlich dimensional heißt X [mm] \hat= \IR^{m} [/mm] (ich weiß nicht, ob das weiterhilft). Aber auf jeden Fall gibt es für X eine Basis, sagen wir [mm] v_{i} [/mm] für 1 [mm] \le [/mm] i [mm] \le [/mm] m

Sei [mm] p_{n} \in [/mm] X' und konvergiere schwach* gegen p [mm] \in [/mm] X', d.h. [mm] p_{n} [/mm] konvergiert punktweise gegen p, d.h. [mm] p_{n} [/mm] (x) [mm] \to [/mm] p(x) für alle x in X.

Insbesondere gilt [mm] p_{n} (v_{i}) \to p(V_{i}) [/mm] für alle i.

Irgendwie will ich jetzt zeigen, dass [mm] \parallel p_{n} [/mm] - p [mm] \parallel \to [/mm] 0,
d.h. [mm] sup_{\parallel x \parallel \le 1} [/mm] | ( [mm] p_{n} [/mm] - p) (x) | [mm] \to [/mm] 0, oder?

Das war schon alles, was mir zu dieser Aufgaben einfällt.....
Bitte, wer kann mir weiterhelfen?
LG, Marie


        
Bezug
schwach*-Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 23:41 Mo 08.12.2008
Autor: rainerS

Hallo Marie!

> Sei X ein endlichdimensionaler normierter Raum. Zeige, dass
> die schwach*-Konvergenz auf X' mit der Normkonvergenz
> übereinstimmt (Hinweis: Benutze eine Basis)
>  Das ist mir bisher eingefallen dazu:
>  
> Normkonvergenz impliziert schwach*-Konvergenz, das weiß ich
> schon aus der Vorlesung.
>  
> X endlich dimensional heißt X [mm]\hat= \IR^{m}[/mm] (ich weiß
> nicht, ob das weiterhilft). Aber auf jeden Fall gibt es für
> X eine Basis, sagen wir [mm]v_{i}[/mm] für 1 [mm]\le[/mm] i [mm]\le[/mm] m
>  
> Sei [mm]p_{n} \in[/mm] X' und konvergiere schwach* gegen p [mm]\in[/mm] X',
> d.h. [mm]p_{n}[/mm] konvergiert punktweise gegen p, d.h. [mm]p_{n}[/mm] (x)
> [mm]\to[/mm] p(x) für alle x in X.
>  
> Insbesondere gilt [mm]p_{n} (v_{i}) \to p(V_{i})[/mm] für alle i.
>  
> Irgendwie will ich jetzt zeigen, dass [mm]\parallel p_{n}[/mm] - p
> [mm]\parallel \to[/mm] 0,
>  d.h. [mm]sup_{\parallel x \parallel \le 1}[/mm] | ( [mm]p_{n}[/mm] - p) (x)
> | [mm]\to[/mm] 0, oder?
>  
> Das war schon alles, was mir zu dieser Aufgaben
> einfällt.....
>  Bitte, wer kann mir weiterhelfen?

Ich würde über die duale Basis gehen: da X und damit $X'$ beide endlichdimensional sind, kannst du die zu [mm]v_{i}[/mm] duale Basis konstruieren und jedes der [mm] $p_n$ [/mm] und auch $p$ als endliche Linearkombination dieser dualen Basisvektoren ausdrücken.

Viele Grüße
   Rainer

Bezug
                
Bezug
schwach*-Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:28 Fr 12.12.2008
Autor: marymary

dankeschön!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]