www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisschwache Ableitung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionalanalysis" - schwache Ableitung
schwache Ableitung < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

schwache Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:39 Fr 06.01.2012
Autor: blascowitz

Hallo,

ich beschäftige mich gerade ein bisschen mit Sobolevräumen. Nun habe ich mal eine Frage zur Schwachen Ableitung. Im Buch "M. Dobrowolski, Angewandte Funktionalanalysis" steht folgender Satz:

"Wenn eine Funktion stark differenzierbar ist, so ist sie auch schwach differenzierbar und die Ableitung stimmt überein"

Das macht intuitiv natürlich Sinn, da die schwache Ableitung ja eine Verallgemeinerung der starken Ableitung sein soll.

Das möchte ich jetzt gerne mal auf den [mm] $\mathbb{L}_{2}$ [/mm] anwenden.
Jetzt nehmen wir mal den Satz her und setzen $f(t) [mm] \in \mathbb{L}_{2}(\IR)$ [/mm] sowie $f(t) [mm] \in C^{\infty}(\IR)$. [/mm] Müsste ich dann nicht voraussetzen, dass die $f'(t)  [mm] \in \mathbb{L}_{2}(\IR)$ [/mm] um zu sagen, dass $f'(t)$ die schwache Ableitung ist?

Viele Grüße
Blasco

        
Bezug
schwache Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:58 Di 10.01.2012
Autor: MatthiasKr

Hallo,

> Hallo,
>  
> ich beschäftige mich gerade ein bisschen mit
> Sobolevräumen. Nun habe ich mal eine Frage zur Schwachen
> Ableitung. Im Buch "M. Dobrowolski, Angewandte
> Funktionalanalysis" steht folgender Satz:
>  
> "Wenn eine Funktion stark differenzierbar ist, so ist sie
> auch schwach differenzierbar und die Ableitung stimmt
> überein"
>  
> Das macht intuitiv natürlich Sinn, da die schwache
> Ableitung ja eine Verallgemeinerung der starken Ableitung
> sein soll.
>
> Das möchte ich jetzt gerne mal auf den [mm]\mathbb{L}_{2}[/mm]
> anwenden.
>  Jetzt nehmen wir mal den Satz her und setzen [mm]f(t) \in \mathbb{L}_{2}(\IR)[/mm]
> sowie [mm]f(t) \in C^{\infty}(\IR)[/mm]. Müsste ich dann nicht
> voraussetzen, dass die [mm]f'(t) \in \mathbb{L}_{2}(\IR)[/mm] um zu
> sagen, dass [mm]f'(t)[/mm] die schwache Ableitung ist?

das ist imho eine Frage der Definition. Gehst Du streng nach der Definition der Sobolev-Räume , müssen alle schwachen Ableitungen in [mm] L^2 [/mm] (bzw. allgemeiner in [mm] L^p) [/mm] sein.  Schaut man sich dagegen die Definition der schwachen ableitung im Rahmen der Theorie der Distributionen an, muss man nicht unbedingt [mm] $f'\in L^2$ [/mm] fordern.

Um zum Beispiel eine []reguläre Distribution zu erzeugen, muss eine funktion lediglich lokal integrierbar sein (das trifft auf funktionen in [mm] L^2 [/mm] grundsätzlich zu). Um dann im distributions-sinne die ableitung(en) zu definieren, muss man keine weiteren anforderungen an $f$ oder $f'$ stellen. Hier schliesst sich der Kreis zu den Sobolewräumen: eine funktion f aus [mm] L^2 [/mm] ist genau dann in [mm] $H^1$ [/mm] wenn sich die distributions-ableitung der von f erzeugten regulären distribution wieder von einer [mm] $L^2$-Funktion [/mm] (nämlich $f'$) erzeugen lässt.

gruss
matthias



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]