www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle Differentialgleichungenschwache Lösung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Partielle Differentialgleichungen" - schwache Lösung
schwache Lösung < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

schwache Lösung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:46 Do 30.06.2011
Autor: hula

Hallo!

Ich habe nur eine Frage betreffend einem Satz aus einem Buch. Wenn ich folgendes Problem lösen möchte:

[mm] \Delta u =0 [/mm] in einer offenen beschränkten Teilmenge der $\ [mm] \IR^n$ [/mm]
[mm] u=0 [/mm] auf dem Rand

Wobei der Rand als "schön" angenommen wird. Ich habe nun eine schwache Lösung t in $\ [mm] H^1 [/mm] $ gefunden. Wenn man nun sagt, dass

[mm] \bruch{\partial t}{\partial x_i} [/mm]

Die Gleichung ebenfalls löst, dann meint man das wie folgt:

[mm] \Delta (\bruch{\partial t}{\partial x_i}) =(\bruch{\partial }{\partial x_i}) \Delta t = (\bruch{\partial t}{\partial x_i}) (0) =0[/mm]

Oder vestehe ich dies falsch?

mfg

hula

        
Bezug
schwache Lösung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:47 Mi 20.07.2011
Autor: MatthiasKr

Hallo,

> Hallo!
>  
> Ich habe nur eine Frage betreffend einem Satz aus einem
> Buch. Wenn ich folgendes Problem lösen möchte:
>  
> [mm]\Delta u =0[/mm] in einer offenen beschränkten Teilmenge der [mm]\ \IR^n[/mm]
>  
> [mm]u=0[/mm] auf dem Rand
>  
> Wobei der Rand als "schön" angenommen wird. Ich habe nun
> eine schwache Lösung t in [mm]\ H^1[/mm] gefunden. Wenn man nun
> sagt, dass
>
> [mm]\bruch{\partial t}{\partial x_i}[/mm]
>
> Die Gleichung ebenfalls löst, dann meint man das wie
> folgt:
>  
> [mm]\Delta (\bruch{\partial t}{\partial x_i}) =(\bruch{\partial }{\partial x_i}) \Delta t = (\bruch{\partial t}{\partial x_i}) (0) =0[/mm]
>  
> Oder vestehe ich dies falsch?

falls diese Frage noch jemanden interessiert:
ganz so einfach ist es nicht, da dein $t$ (ungewöhnliche bezeichnung für eine funktion übrigens) ja nur schwache lösung der PDG ist. Du kannst also im allgemeinen nicht ohne weiteres eine punktweise, klassische ableitung berechnen. Insofern müsste man wohl sowieso dazusagen, dass [mm] $\bruch{\partial t}{\partial x_i}$ [/mm] im schwachen, distributions-sinne zu verstehen ist. dieses würde ich dann in die schwache formulierung der PDG einsetzen und versuchen, die gewünschte aussage zu beweisen (ableitung durch partielle integration auf testfunktion übertragen).

Gruss
Matthias


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]