www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastiksigma- Algebra
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - sigma- Algebra
sigma- Algebra < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

sigma- Algebra: Aufgabenhilfe
Status: (Frage) beantwortet Status 
Datum: 08:30 Mo 18.10.2010
Autor: Ultio

Aufgabe
Wir betrachten die Menge [mm] \Omega [/mm] = {1,2,3,4,5} sowie die Potenzmenge von {1,2,3}, die mit C bezeichnet werde. Bestimmen Sie die von C auf der Ereignismenge [mm] \Omega [/mm] erzeugte [mm] \sigma [/mm] - Algebra.


Hallo Matheraumler,
bräuchte bitte eure Hilfe. Bin gerade nicht so sicher ob das richtig ist.
Potenzmenge C = [mm] (1),(2),(3),(1,2),(1,3),(2,3),(1,2,3),\emptyset [/mm]  (Kommentar: entschuldigt bitte die Form, mit geschweiften Klammern wurde dauernd etwas anderes dargestellt.)
Da "wenn eine Menge enthalten ist, ist auch ihr Komplement enthalten" gilt:
{1} --> {2,3,4,5}
{2} --> {1,3,4,5}
{3} --> {1,2,4,5}
{1,2} --> {3,4,5}
{1,3} --> {2,4,5}
{2,3} --> {1,4,5}
{1,2,3} --> {4,5}
[mm] \emptyset [/mm] --> {1,2,3,4,5}

Zudem muss ich doch auch beliebige Vereinigungen betrachten?
Würden, dann neue Elemente hinzukommen, bin nämlich der Meinung nicht.
Die von C auf [mm] \Omega [/mm] erzeugte [mm] \sigma [/mm] - Algebra ist also
[mm] \sigma [/mm] (C) = {{1} --> {2,3,4,5}
{2}, {1,3,4,5}, {3}, {1,2,4,5}, {1,2} ,{3,4,5}, {1,3}, {2,4,5}, {2,3} ,{1,4,5}, {1,2,3} , {4,5}, [mm] \emptyset [/mm] , {1,2,3,4,5}}


Vielen Dank für eure Hilfe.
Gruß

        
Bezug
sigma- Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 10:39 Mo 18.10.2010
Autor: Gonozal_IX

Hiho,

>  Potenzmenge C =
> [mm](1),(2),(3),(1,2),(1,3),(2,3),(1,2,3),\emptyset[/mm]  
> (Kommentar: entschuldigt bitte die Form, mit geschweiften
> Klammern wurde dauernd etwas anderes dargestellt.)
>  Da "wenn eine Menge enthalten ist, ist auch ihr Komplement
> enthalten" gilt:

[ok]

>  {1} --> {2,3,4,5}

>  {2} --> {1,3,4,5}

>  {3} --> {1,2,4,5}

>  {1,2} --> {3,4,5}

>  {1,3} --> {2,4,5}

>  {2,3} --> {1,4,5}

>  {1,2,3} --> {4,5}

>  [mm]\emptyset[/mm] --> {1,2,3,4,5}

[ok]  

> Zudem muss ich doch auch beliebige Vereinigungen
> betrachten?

[ok]

> Würden, dann neue Elemente hinzukommen, bin nämlich der
> Meinung nicht.

[ok]

>  Die von C auf [mm]\Omega[/mm] erzeugte [mm]\sigma[/mm] - Algebra ist also

[ok]

Bis auf die Tatsache, dass du aus dem --> ein , machen solltest ;-)

MFG,
Gono.

Bezug
                
Bezug
sigma- Algebra: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:34 Mo 18.10.2010
Autor: Ultio

Vielen Vielen Dank.
Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]