www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastiksigma algebra zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - sigma algebra zeigen
sigma algebra zeigen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

sigma algebra zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:11 So 30.11.2008
Autor: SpoOny

Aufgabe
Sei O [mm] \not= \emptyset [/mm] und [mm] (A_{1},...,A_{n}) [/mm] eine Partition von O.

Man Zeige F := { [mm] \bigcup_{i \in J}^{} A_{i} [/mm] : J [mm] \subset [/mm] {1,2,...,n} } ist Sigma Algebra

und  |F|= [mm] 2^{n} [/mm]

Ich muss also zeigen
1. [mm] \emptyset \in [/mm] F
2. A [mm] \in [/mm] F  dann auch [mm] A^{c} \in [/mm] F
3. Vereinigungen von Mengen in F sind wieder in F

ich hab hier ein ganz großes Problem mit dem Komplement. Ich weiß von O ja nichts weiter außer das O nicht leer ist. Wie stell ich das an?

Ich hab auch verständnisprobleme mit F.
Ist das nicht einfach die vereinigung sodass F=O wieder ist?

LG

        
Bezug
sigma algebra zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:10 Mo 01.12.2008
Autor: pypstair

Partion heißt, dass [mm] A_i \cap A_j [/mm] = [mm] \emptyset [/mm] für [mm] i\ne [/mm] j
Dann gilt für eine beliebige Menge [mm] J\subset \left \{ 1,...,n\right \} [/mm] :

[mm] (\bigcup_{i\in J} A_i )^c =\bigcup_{i\not\in J} A_i [/mm]

F ist die Menge aller möglichen Vereinigungen der [mm] A_i [/mm]

Bezug
                
Bezug
sigma algebra zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:00 Mo 01.12.2008
Autor: SpoOny

ahh danke, das mit dem Komplement war mir überhaupt nicht klar... aber wenn das so definiert ist...

Hatte da an inverse/reziproke elemente gedacht, aber so gehts jetzt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]