simultane Dialogisierung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:55 Di 12.08.2014 | Autor: | manmath |
Aufgabe | aus einem Skript:
Sind M und A beliebige symmetrische Matritzen und ist M positiv definit, so existiert stets eine nichtsinguläre Matrix G, so dass beide Matrizen M und A diagonalisiert werden können; G kann so gewählt werden, dass die Diagonalmatrix zu M die Eineitsmatrix I ist, es gilt dann:
^{t}G M G = I und ^{t}G A G = D
sowie A G = M G D
(sorry das hochgestellte t (transponiert) vor G funktioniert hier nicht, unten aber)
Schreiben wir die Matrix G mittels ihrer Spalten als G = [mm] (g^{1} [/mm] ... [mm] g^{n}), [/mm] dann können die vorigen Gleichungen geschrieben werden als:
[mm] ^{t}g^{k}M g^{j} [/mm] = [mm] \delta_{kj} [/mm] und [mm] Ag^{j}=\lambda_{j}M g^{j} [/mm] |
Nur eine Frage zur letzten Zeile: wie kommt man von den Beziehungen zwischen den Matrizen M, A und G zu der Darstellung mittels Spaltenvektoren von G. Ich weiss nur, dass man Matrizenprodukte als Produkte von Zeilen- und Spaltenvektorenvektoren darstellen kann.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:56 Sa 16.08.2014 | Autor: | felixf |
Moin!
> aus einem Skript:
> Sind M und A beliebige symmetrische Matritzen und ist M
> positiv definit, so existiert stets eine nichtsinguläre
> Matrix G, so dass beide Matrizen M und A diagonalisiert
> werden können; G kann so gewählt werden, dass die
> Diagonalmatrix zu M die Eineitsmatrix I ist, es gilt dann:
> ^{t}G M G = I und ^{t}G A G = D
> sowie A G = M G D
> (sorry das hochgestellte t (transponiert) vor G
> funktioniert hier nicht, unten aber)
> Schreiben wir die Matrix G mittels ihrer Spalten als G =
> [mm](g^{1}[/mm] ... [mm]g^{n}),[/mm] dann können die vorigen Gleichungen
> geschrieben werden als:
> [mm]^{t}g^{k}M g^{j}[/mm] = [mm]\delta_{kj}[/mm] und [mm]Ag^{j}=\lambda_{j}M g^{j}[/mm]
>
> Nur eine Frage zur letzten Zeile: wie kommt man von den
> Beziehungen zwischen den Matrizen M, A und G zu der
> Darstellung mittels Spaltenvektoren von G. Ich weiss nur,
> dass man Matrizenprodukte als Produkte von Zeilen- und
> Spaltenvektorenvektoren darstellen kann.
Verwende dafuer die folgende Formel: ist $X$ eine Matrix mit den Zeilen [mm] $x_1, \dots, x_n$ [/mm] und ist $Y$ eine Matrix mit den Spalten [mm] $y_1, \dots, y_n$, [/mm] dann hat $X [mm] \cdot [/mm] Y$ in der Zeile $i$ und Spalte $j$ den Eintrag [mm] $x_i y_j$.
[/mm]
Wenn du das (evtl. mehrmals) auf [mm] ${}^t [/mm] G M G = I$ sowie $A G = M G D$ anwendest (und verwendest, dass der $(i,j)$-Eintrag von $I$ gleich [mm] $\delta_{ij}$ [/mm] ist und $D$ offenbar eine Diagonalmatrix mit [mm] $\lambda_i$ [/mm] an der Stelle $(i, i)$), dann kommst du auf die Gleichungen.
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:43 So 17.08.2014 | Autor: | manmath |
Wenn man weiss, dass $ [mm] x_i y_j [/mm] $ als Skalarprodukt der beiden Vektoren einen Eintrag liefert ist und dann mal die Produkte der beteiligten Matrizen als Spalten/Zeilen aufschreibt, kommt man zu dem Ergebnis.
Danke für die Antwort
LG manmath
|
|
|
|