www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Skalarprodukteskalarprodukte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Skalarprodukte" - skalarprodukte
skalarprodukte < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

skalarprodukte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:22 Sa 29.03.2008
Autor: eva-marie230

Aufgabe
Sei (V,<.,.>) ein endlich-dimensionaler euklidischer Vektorraum. Zeigen sie für Unterräume U,W [mm] \subseteq [/mm] V
(U + [mm] W)^\perp^ [/mm] =  [mm] U^\perp \cap W^\perp, [/mm]
[mm] U^\perp [/mm] + [mm] W^\perp [/mm] = (U [mm] \cap W)^\perp [/mm]

Hallo,

Also damit kenn ich mich überhaupt nicht aus,diese Aufgabe bekamen wir als wir mit dem Thema Skalarprodukte begonnen haben,welches ich irgendwie gar nicht verstanden habe.

Kann mir da vielleicht jemand helfen?

Gruß
eva marie



        
Bezug
skalarprodukte: Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 Sa 29.03.2008
Autor: Merle23

[mm] \perp [/mm] steht für "steht senkrecht auf...", das kennste ja aus der Schule von z.B. Geraden, wo dann g [mm] \perp [/mm] h bedeutet, dass die Gerade g senkrecht auf der Gerade h steht.

In euklidischen Vektorräumen definiert man das mit Hilfe des Skalarproduktes, indem man einfach sagt, dass die Vektoren v und w genau dann senkrecht aufeinander stehen, wenn <v,w> = 0.

Wenn hinter einem Vektor bzw. einer Menge das Zeichen [mm] \perp [/mm] steht, dann meint man damit die Menge aller Vektoren, die auf diesem Vektor/dieser Menge senkrecht stehen.
[mm] U^{\perp} [/mm] := {v [mm] \in [/mm] V | <v,u> = 0 [mm] \forall [/mm] u [mm] \in [/mm] U}. Man kann zeigen, dass dies ein Untervektorraum ist.

Nun zu deiner Aufgabe: du musst einfach zeigen, dass die Mengen gleich sind (hierbei bedeutet das "+" die Untervektorraumsumme - das müsstet ihr schon gehabt haben in der Vorlesung). Vergiss nicht, dass man die Gleichheit von zwei Mengen durch die Extensionalität zeigt, also: A = B [mm] :\gdw [/mm] A [mm] \subset [/mm] B [mm] \wedge [/mm] B [mm] \subset [/mm] A.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]