www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungstetige Exponentialverteilung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitsrechnung" - stetige Exponentialverteilung
stetige Exponentialverteilung < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stetige Exponentialverteilung: Callcenter Anrufe
Status: (Frage) für Interessierte Status 
Datum: 01:01 Do 04.12.2014
Autor: Mathefreund22

Hallo, Kann mir jemand diese Aufgabe lösen, so dass ich den Lösungsweg nachvollziehen kann? Oder mir sagen, welche Schritte ich vollziehen muss um diese Aufgabe zu lösen?
Ich freue mich über jeden Tipp !!!


Ein Kundenberater arbeitet in einem Call-Center.Er empfängt Anrufe aus aller Welt,d.h. aus allen Zeitzonen;aus diesem Grunde hängt die Häufigkeit der Anrufe nicht von der Tageszeit ab.

Sei nun t die (zufällige) Zeit zwischen zwei Anrufen,wobei wir diese Zeit in Sekunden messen.Die Erfahrung sagt,dass die Verteilungsfunktion V die folgende Struktur hat:Es gibt ein c > 0 mit

V(x) = p(t ≤ x) = 1 − e^(− c mal x) für alle x ≥ 0

Dieser Wert V(x) beschreibt die Wahrscheinlichkeit dafür,dass es bis zum nächsten Anruf höchstens x Sekunden dauert.Oder anders ausgedrückt:Wenn man nach einem Anruf x Sekunden vergehen lässt,so ist V(x) die Wahrscheinlichkeit dafür,dass während dieser Zeitspanne ein neuer Anruf eingetroffen ist.
Der Vollständigkeit halber definieren wir

V(x) = p( t ≤ x ) = 0 für alle x < 0.^17


a.)Der Kundenberater hat festgestellt, dass er in der Hälfte aller Fälle höchstens 20 Sekunden auf den nächsten Anruf warten muss.Bestimmen Sie aus dieser Angabe die Zahl c in der Gleichung
V(x) = 1  −  e^(− c mal x) .

Runden Sie bitte diese Zahl auf 5 Nachkommastellen.

Hinweis:In der Gleichung [mm] e^{u} [/mm] = v kann man auf beiden Seiten den natürlichen Logarithmus ln bilden;auf diese Weise erhält man u = ln(v).

b.)Wie wahrscheinlich ist es,dass spätestens nach 10 Sekunden der nächste Anruf ankommt?

c.)Bestimmen Sie die Zahl x mit der folgenden Eigenschaft:Mit 80%-iger Wahrscheinlichkeit dauert es höchstens x Sekunden,bis der nächste Anruf hereinkommt.

Hinweis: Auch hier führt beidseitiges Logarithmieren zum Ziel.

d.)Bestimmen Sie diejenige zu V gehörende Dichtefunktion f,die folgendermaßen aufgebaut ist:


[mm] f(x)=\begin{cases} V′(x), & \mbox{ falls } x\not=0 \mbox{} \\ 0, & \mbox{falls } x=0 \mbox{ } \end{cases} [/mm]

Zeichnen Sie außerdem die Funktionsgraphen von V und f in ein Koordinatensystem.


Folgenden Hinweis gibt es zu der Aufgabe:

Wenn [mm] A(x)=e^{B(X)}ist, [/mm] so ergibt die Kettenregel, dass A'(x)=B'(x) mal [mm] e^{B(X)} [/mm]

Sie dürfen darauf vertrauen, dass die von Ihnen konstruierte Funktion f tatsächlich eine Dichtefunktion ist. Insbesondere brauchen Sie nicht nachzuweisen, dass die Fläche unter dem Graphen von f den Inhalt 1 hat.

Ebenso dürfen Sie darauf vertrauen, dass V die zu f gehörende Verteilungsfunktion ist. Das heißt, dass Sie diese Beziehung zwischen V und f nicht beweisn müssen.

Ihre Zeichnung soll ungefähr den Bereich -5<_x<_50 abdecken. Es empfiehlt sich, die x-Achse in 5er Schritte einzuteilen, wobei der Abstand zwischen x und (x+5) ungefähr 1 cm beträgt. In der vertikalen Achse sollte der Abstand zwischen y und (y+0,1) ungefähr 1,5 cm betragen. Bei diesen Vorgaben können Sie beide Funktionsgraphen recht gut in ein einziges Koordinatensystem eintragen. Sie können aber auc zwei verschiedene Koordinatensysteme anlegen, eines für V und das andere für f.

Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]