www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisstetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionalanalysis" - stetigkeit
stetigkeit < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:47 Mi 17.05.2006
Autor: Phys

in unserem Aufgabenblatt ist folgende (meiner meinung nach:unlösbare Aufgabe;-) für die ich nichtmal nen Lösungsansatz habe:
Sei I=[0,1] und V= [mm] C^{1}(I) [/mm] versehen mit der Norm:
[mm] \parallel [/mm] f [mm] \parallel [/mm] = [mm] \max_{x\in I}\wurzel{ |f(x) |^2+|f'(x)|^2} [/mm]
und [mm] V_{0} [/mm] der Raum [mm] C^1(I) [/mm] versehen mit der Norm [mm] \parallel [/mm] f [mm] \parallel_{ \infty}= \max_{x\in I}|f(x)|.Sei [/mm] W=C(I) mit der Norm [mm] \parallel [/mm] f [mm] \parallel_{ \infty}= \max_{x\in I}|f(x)| [/mm] überprüfen sie die Stetigkeit von [mm] D_{1}:V \to [/mm] W,f [mm] \to [/mm] f'und [mm] D_{2}:V_{0} \to [/mm] W,f [mm] \to [/mm] f' und dann soll noch gegebenenfalls  [mm] \parallel D_{1} \parallel [/mm] bestimmt werden. Ich wäre für jede Hilfe sehr dankbar, da ich momentan zeimlich auf dem schlauch steh(also keinen Ansatz habe)

        
Bezug
stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:54 Do 18.05.2006
Autor: MatthiasKr

Hallo phys,

erstmal: ruhig blut! denn von unlösbarkeit ist diese aufgabe meilenweit entfernt.... ;-)

also, du hast hier verschiedene funktionenräume mit verschiedenen normen gegeben und sollst prüfen, ob der ableitungsoperator jeweils stetig ist.

Zunächst mal ist der Abl.operator ja linear. Wie kann man also die stetigkeit charakterisieren? hat man einen linearen Op. [mm] $D:X\to [/mm] Y$ dann ist dieser gd. stetig, wenn es eine konstante $C$ gibt mit [mm] $\|Dx\|_Y\le C\cdot \|x\|_X,\forall x\in [/mm] X$. Die kleinste solche Konstante $C$ nennt man dann die Operatornorm [mm] $\|D\|$ [/mm] des Operators.

Nehmen wir also mal [mm] $D_1:V\to [/mm] W, [mm] f\mapsto [/mm] f'$. Du musst prüfen, ob du die  [mm] $C^0$-Norm, [/mm] also die maximum-norm, der ableitung durch die [mm] $C^1$-Norm [/mm] der funktion abschätzen kannst. es gilt doch aber

[mm] $\|f'\|_\infty=\max_{x \in I}|f'(x)|\le \max_{x \in I}\wurzel{ |f(x) |^2+|f'(x)|^2}=\|f\|_V$ [/mm]

[mm] $D_1$ [/mm] ist also stetig! Und [mm] $\|D_1\|$ [/mm] haben wir nebenbei auch schon bestimmt, siehst du das? [mm] $D_2$ [/mm] kannst du ja jetzt selbst mal untersuchen.

Gruß
Matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]