www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisstetigkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - stetigkeit
stetigkeit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stetigkeit: Frage
Status: (Frage) beantwortet Status 
Datum: 00:55 So 02.01.2005
Autor: SUNNY000

hallo, ich muss die intervalle untersuchen, auf denen die funktion stetig ist.
f mit f(x) = [mm] \bruch{ x^2 + e^x }{ 2 - sin x } [/mm]
die funktion ist auf ihrem ganzen Db stetig. dazu ist dann  
f stetig auf - [mm] \infty [/mm]  < x < + [mm] \infty [/mm] bzw. ]- [mm] \infty, [/mm] + [mm] \infty[ [/mm]
ist es richtig soweit?
die nächste frage ist, ich muss hier die intervalle bestimmen, auf denen die funktion positiv bzw. negative ist. Muss ich dazu hier die halbseitige grenzwertbetrachtung machen oder wie ist dazu mein erster schritt?

        
Bezug
stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 01:28 So 02.01.2005
Autor: Loddar

N'Abend SUNNY000 !!

> hallo, ich muss die intervalle untersuchen, auf denen die
> funktion stetig ist.
> f mit [mm]f(x) = \bruch{x^2 + e^x}{2 - sin x}[/mm]
> die funktion ist auf ihrem ganzen Db stetig. dazu ist dann  
> f stetig auf - [mm]\infty[/mm]  < x < + [mm]\infty[/mm] bzw. ]- [mm]\infty,[/mm] + [mm]\infty[[/mm]
> ist es richtig soweit?

[daumenhoch]


> die nächste frage ist, ich muss hier die intervalle bestimmen,
> auf denen die funktion positiv bzw. negative ist.
> Muss ich dazu hier die halbseitige grenzwertbetrachtung machen
> oder wie ist dazu mein erster schritt?

Bestimmung der Nullstellen von f(x)!
Daraus kann man die entsprechenden Intervalle ermitteln ...

Siehe auch folgende Frage (mit Antwort): Stetigkeit auf Intervallen !!


Grüße Loddar


Bezug
                
Bezug
stetigkeit: Frage
Status: (Frage) beantwortet Status 
Datum: 02:09 So 02.01.2005
Autor: SUNNY000

vielen dank für den link! Es ist mir schon beihnah peinlich, aber wie kommt ihr darauf, dass diese funktion keine nullstelle hat? ich muss doch [mm] x^2 [/mm] + [mm] e^x [/mm] = 0 rechnen. Ich verstehe nicht, warum ihr das trennt und einmal [mm] x^2 [/mm] =0 und dann [mm] e^x [/mm] = 0 behandelt.

gruß Sunny

Bezug
                        
Bezug
stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 02:33 So 02.01.2005
Autor: andreas

hi SUNNY000

irgendwie wurde meine erste antwort gelöscht, also hier nochmal:


es gilt ja [m] e^x > 0 [/m] und [m] x^2 \geq 0 [/m], somit kann [m] x^2 + e^x [/m] nie null sein, da der erste summand immer positiv und der andere nie negativ ist!


grüße
andreas



Bezug
                                
Bezug
stetigkeit: frage + mittleilung
Status: (Frage) beantwortet Status 
Datum: 16:41 So 02.01.2005
Autor: SUNNY000

hi, dankeschön für die erklärung, das verstehe ich jetzt, aber ich muss doch die intervalle angeben wo f positiv bzw. negativ ist, in diesem falle gibt es nur  [mm] \infty [/mm] oder sehe ich das falsch?

MFG Sunny

Bezug
                                        
Bezug
stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:23 So 02.01.2005
Autor: Tintenfisch


> hi, dankeschön für die erklärung, das verstehe ich jetzt,
> aber ich muss doch die intervalle angeben wo f positiv bzw.
> negativ ist, in diesem falle gibt es nur  [mm]\infty[/mm] oder sehe
> ich das falsch?
>  
> MFG Sunny
>  

Hi! Scheinst ja auch in OL zu stuedieren!
Also, du hast ja nun herausbekommen, dass es nur ein Intervall gibt, dass entweder komplett positiv oder komplett negativ ist.
Wir hatten in der VL den ZWS(Zwischenwertsatz) der sagt, dass man eine Zahl des INtervalls einsetzen kann( für x), damit man weiß, ob der Teil negativ oder positiv ist. Setz also einfach zum Beispiel null ein , und du bekommst entweder eine positive oder negative Zahl heraus. Dann weißt du auch, wie das ganze Intervall ist.


Bezug
                                                
Bezug
stetigkeit: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:57 Di 04.01.2005
Autor: SUNNY000

hey leute, vielen dank für eure tiPPS1
@ Tintenfisch, jap studier auch in OL, finde das thema aber nicht so toll.
Naja, ich werd dann weiter rum experimentieren!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]