www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisstetigkeit sinh(x)
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - stetigkeit sinh(x)
stetigkeit sinh(x) < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stetigkeit sinh(x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:45 Sa 21.01.2006
Autor: AriR

Aufgabe
Zeigen sie, dass [mm] sinh(x)=\bruch12(e^x [/mm] - [mm] e^{-x}) [/mm] auf ganz [mm] \IR [/mm] stetig ist

(Frag zuvor nicht gestellt)
Hey Leute, habe dies einfach so gezeigt, ist das richtig?

z.z.:
[mm] \limes_{x\rightarrow a} \bruch12(e^x [/mm] - [mm] e^{-x}) [/mm] = [mm] \bruch12(e^a [/mm] - [mm] e^{-a}) [/mm]

Bew: sei [mm] x_n \in \IR [/mm] mit  [mm] \limes_{n\rightarrow\infty} x_n=a [/mm]


[mm] \limes_{n\rightarrow\infty} \bruch12(e^{x_n} [/mm] - [mm] e^{-x_n}) [/mm] = [mm] \bruch12(e^a [/mm] - [mm] e^{-a}) [/mm]


ist das so richtig?

        
Bezug
stetigkeit sinh(x): Antwort
Status: (Antwort) fertig Status 
Datum: 14:06 Sa 21.01.2006
Autor: mathmetzsch

Hallo,

also ich würde zunächst mal etwas argumentieren. Was wissen wir denn? [mm] e^{x} [/mm] ist stetig. [mm] 0,5*e^{x} [/mm] ist auch stetig. Bleibt die Frage, ob [mm] 1/e^{x} [/mm] stetig ist. Das wissen wir aber auch, denn der Quotient stetiger Funktionen ist stetig. Weiterhin kann [mm] e^{x} [/mm] niemals null werden. 1 ist als Konstante stetig und [mm] e^{x} [/mm] wohl auch.

Ich hoffe, ihr habt all diese Dinge bereits in der Vorlesung gezeigt, denn dann wären wir jetzt fertig. Die Funktion ist also lediglich eine Zusammensetzung stetiger Funktionen und damit stetig.

Viele Grüße
Daniel

Bezug
                
Bezug
stetigkeit sinh(x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:11 Sa 21.01.2006
Autor: AriR

jo das ist sicher viel eleganter, aber ist meine lösung falsch?

Bezug
                        
Bezug
stetigkeit sinh(x): Antwort
Status: (Antwort) fertig Status 
Datum: 14:16 Sa 21.01.2006
Autor: SEcki


> jo das ist sicher viel eleganter, aber ist meine lösung
> falsch?

Naja, da muss man fast ausholn ... Du benutzt in deinem Beweis schon, dass [m]e^x[/m] stetig ist (und Regeln für Folgen), und dann beweist du (Folgenkriterium) einen Spezialfall der obigen Regeln. Es ist quasi das gleiche.

Das sind so Aufgaben, wo man als Student eigentlich schreiben will: trivial.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]