www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisstetigkeit von funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - stetigkeit von funktionen
stetigkeit von funktionen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stetigkeit von funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:46 So 10.04.2005
Autor: Swollocz

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo!
Ich habe eine Aufgabe vor mir liegen, mit der ich nicht genug anzufangen weiß. Kann mir vielleicht jemand eine Anregung geben?
folgendes:

Untersuchen sie, für welche reelen Zahlen x die Funktionen

|x-[x]-1/2|    und    [x]+[1-x]

stetig, bzw. unstetig sind.

Also wenn man sie aufzeichnet, dann ist es ja offensichtlich, aber ich bin sehr am zweifeln, ob die graphische Lösung als mathematisch korrekt bezeichnet werden kann.
Hat vielleicht jemand eine Anregung zu einem mathematisch korrekteren Lösungsweg?
Danke im Vorraus

        
Bezug
stetigkeit von funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:03 So 10.04.2005
Autor: Max

Hallo Swollocz,

menschenskind macht ihr aber auch schwere Sachen in der Grundschule. Da würde ich auch Hilfe brauchen...

Dir auch ein herzliches
[willkommenmr]




> Hallo!
>  Ich habe eine Aufgabe vor mir liegen, mit der ich nicht
> genug anzufangen weiß. Kann mir vielleicht jemand eine
> Anregung geben?
>  folgendes:
>  
> Untersuchen sie, für welche reelen Zahlen x die Funktionen
>  
> |x-[x]-1/2|    und    [x]+[1-x]
>  
> stetig, bzw. unstetig sind.
>  
> Also wenn man sie aufzeichnet, dann ist es ja
> offensichtlich, aber ich bin sehr am zweifeln, ob die
> graphische Lösung als mathematisch korrekt bezeichnet
> werden kann.
>  Hat vielleicht jemand eine Anregung zu einem mathematisch
> korrekteren Lösungsweg?

Ich gehe mal davon aus, dass du

[mm] $f(x)=\left| x- [x]+\frac{1}{2}\right|$ [/mm] bzw. $g(x)=[x]-[1-x]$ meinst und $[x]$ die Gaußklammer von $x$ ist.

Für alle Intervalle $(z; z+1), [mm] \quad z\in\IZ$, [/mm] ist $f$ stetig, da es eine Komposition aus stetigen Funktionen ist bzw. eine konstante Funktion ist, d.h. du musst nur noch für [mm] $x=z,\quad z\in\IZ$ [/mm] auf Stetigkeit überprüfen. Dann sollte den Rest entweder mit Folgendkriterium wiederlegen können oder mit Epsilontik nachweisen können.

Ich denke mal, dass für $g$ eine analoge Argumentation erfolgreich sein wird.

Gruß Max

Bezug
                
Bezug
stetigkeit von funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:04 Mo 11.04.2005
Autor: johann1850

Hi, entschuldige für blöde frage aber:
Wie macht man das denn mit x=z machen?

Bezug
                        
Bezug
stetigkeit von funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:37 Mo 11.04.2005
Autor: Max

Hallo,

Die Funktion $f$ ist überall stetig. Insebsondere auch für [mm] $x=z\in\IZ$. [/mm]
Sei [mm] $(a_n)_{n\in\IN}$ [/mm] eine beliebige Nullfolge, dann definiere [mm] $x_n=z+a_n$: [/mm]

Für [mm] $a_n>0$ [/mm] gilt: [mm] $\left|x_n-\left[x_n\right]+\frac{1}{2}\right| [/mm] = [mm] \left| z +a_n - z +\frac{1}{2}\right| [/mm] = [mm] \left|a_n+\frac{1}{2}\right|$ [/mm]

Für [mm] $a_n<0$ [/mm] gilt: [mm] $\left|x_n-\left[x_n \right]+\frac{1}{2}\right|=\left|z+a_n-(z-1)+\frac{1}{2}\right|=\left|a_n-1+\frac{1}{2}\right|=\left|a_n-\frac{1}{2}\right|$. [/mm]

Für [mm] $n\to\infty$ [/mm] ergibt sich immer als Funktionswert [mm] $\frac{1}{2}$, [/mm] daher ist $f$ stetig.



Die Funktion $g$ ist nicht stetig für [mm] $x=z\in\IZ$. [/mm] Sei [mm] $(a_n)_{n\in\IN}$ [/mm] eine Nullfolge mit [mm] $0
Wegen [mm] $\left[x^+_n\right]-\left[1-x^+_n\right]=z-(1-z-1)=2z$ [/mm] und [mm] $\left[x^-_n\right]-\left[1-x^-_n\right]=(z-1)-(1-z+1)=2z-2$ [/mm] folgt, dass nicht für alle Folgen [mm] $x_n$ [/mm] gilt, dass [mm] $\lim_{n\to\infty}g(x_n)=g\left(\lim_{n\to\infty}x_n\right)$. [/mm] Daher ist $g$ nicht stetig bei allen [mm] $z\in\IZ$. [/mm]

Gruß Max


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]