www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikstochastische matrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stochastik" - stochastische matrizen
stochastische matrizen < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stochastische matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:00 Mo 05.09.2005
Autor: prinzessin87

Hallo Ihr Lieben,
ich brauche ganz dringend Hilfe!!!! dachte eigentlich, ich würde das thema "stochastische matrizen2 nochmal verstehen, doch dann kommen plötzlich wiede so böse Aufgaben.....
Die Überschrift der Aufgabe heisst schon mal "die vollständige Reihe", so, und in der Aufgabe geht es um 5000 Lose mit den Nummer 1-5 (gleichverteilt) in einem Topf. Die frage lautet jetzt genau, wie lange ich wohl warten muss, bis ich eine vollständige Reihe, also jede Losnummer einmal, gezogen habe.

So, habe mir dazu auch schon mal einen vektor und eine Matrize aufgestellt, doch was nun??

Bitte helft mir, ich bin total ahnungslos.... (und das shlimme ist, da stehe noch mehr von diesem Aufgabentyp auf meinem Zette l=(  !!!!!)

Vielen Dank schon mal führ eure Mühen, Nina


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
stochastische matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:03 Mo 05.09.2005
Autor: prinzessin87

P.s.: habe mich bei der Zeitangabe wohl verklickt.... habe dafür bis morgen früh nur zeit =((((

Nina

Bezug
        
Bezug
stochastische matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:11 Di 06.09.2005
Autor: Brigitte

Hallo!

Auch auf die Gefahr hin, dass es Dich vielleicht schon nicht mehr interessiert, möchte ich trotzdem eine Antwort formulieren.

>  Die Überschrift der Aufgabe heisst schon mal "die
> vollständige Reihe", so, und in der Aufgabe geht es um 5000
> Lose mit den Nummer 1-5 (gleichverteilt) in einem Topf. Die
> frage lautet jetzt genau, wie lange ich wohl warten muss,
> bis ich eine vollständige Reihe, also jede Losnummer
> einmal, gezogen habe.

Der Trick besteht darin, die Zufallsvariablen [mm] X_k [/mm] zu betrachten, die die Anzahl von gezogenen Losen beschreibt, bis sich die Zahl der unterschiedlichen Nummern in der eigenen Sammlung um 1 auf k erhöht [mm] $(k=1,\ldots,5)$. [/mm] Beim ersten Zug erhöht sich diese Zahl auf jeden Fall von 0 auf 1, also [mm] $P(X_1=1)=1$, [/mm] weil man ja vorher 0 verschiedene Nummern hatte und mit dem ersten Los auf jeden Fall eine bestimmte Nummer zieht.
Wie ist es nun mit [mm] $X_2$? [/mm] Die Wahrscheinlichkeit, dass man im nächsten Zug keine neue Nummer hinzubekommt (sondern wieder die zieht, die man schon hat), ist 1/5. Nun zieht man so lange, bis man eine neue Nummer erhält. [mm] $X_2$ [/mm] ist also geometrisch verteilt mit $p=4/5$ (siehe z.B. hier). Genauso überlegt man sich, dass [mm] $X_3$ [/mm] geometrisch verteilt ist mit $p=3/5$, [mm] $X_4$ [/mm] geometrisch verteilt ist mit $p=2/5$ und [mm] $X_5$ [/mm] geometrisch verteilt ist mit $p=1/5$. Wenn man das durch einen Graphen darstellen möchte und sich als Zustände $0, 1, [mm] \ldots,5$ [/mm] für die Anzahl an verschiedenen Nummern definiert, erhält man

      
    1        4/5        3/5       2/5        1/5
0  --->   1  --->   2  --->   3  --->   4  --->   5
         <>        <>        <>        <>        
         1/5       2/5       3/5       4/5        

Das <> soll einen Pfeil von einem bestimmten Zustand zu sich selbst darstellen. Diesen Graphen kann man natürlich auch durch eine stochastische Matrix ausdrücken.

Um die Ausgangsfrage zu beantworten, nehme ich an, dass hier die mittlere Wartezeit, also der Erwartungswert der zu ziehenden Lose, gefragt ist. Die Gesamtzahl an zu ziehenden Losen ist durch [mm] $X_1+X_2+X_3+X_4+X_5$ [/mm] gegeben und deren Erwartungswert bestimmt man durch Aufsummieren der einzelnen Erwartungswerte von [mm] $X_1$ [/mm] bis [mm] $X_5$. [/mm] Der Erwartungswert für eine geometrisch verteilte Zufallsvariable mit Parameter p ist gerade 1/p. Damit kannst Du nun alles ausrechnen.

Viele Grüße
Brigitte

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]