www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Induktionsumme -1^k(n über k)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Induktion" - summe -1^k(n über k)
summe -1^k(n über k) < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

summe -1^k(n über k): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:31 Mi 22.06.2011
Autor: elmanuel

Aufgabe
Berechnen Sie [mm] \sum_{k=0}^{n}(-1)^k{n \choose k}. [/mm]
Vergessen Sie nicht den Fall k=0 gesondert zu behandeln.

Hallo liebe Gemeinde!

Also ich habe durch ausprobieren raus:

[mm] \sum_{k=0}^{n}(-1)^k{n \choose k}\left\{\begin{matrix} 0 \text{\qquad(für n=0 und gerade n)} & \\ 1 \text{\qquad(für ungerade n)} & \end{matrix}\right. [/mm]

dann hatte ich noch die überlegung

[mm] \sum_{k=0}^{n}(-1)^k{n \choose k} [/mm] = [mm] \sum_{k=0}^{n}{n \choose 2k} [/mm] - [mm] \sum_{k=0}^{n}{n \choose 2k+1} [/mm]

wie ich jetzt aber zeigen soll das meine vermutung für alle geraden bzw ungeraden n gilt da stehe ich momentan an...

Vielleicht hat wer nen Tipp!

Danke

        
Bezug
summe -1^k(n über k): Antwort
Status: (Antwort) fertig Status 
Datum: 22:35 Mi 22.06.2011
Autor: rainerS

Hallo!

> Berechnen Sie [mm]\sum_{k=0}^{n}(-1)^k{n \choose k}.[/mm]
>  Vergessen
> Sie nicht den Fall k=0 gesondert zu behandeln.
>  Hallo liebe Gemeinde!
>  
> Also ich habe durch ausprobieren raus:
>  
> [mm]\sum_{k=0}^{n}(-1)^k{n \choose k}\left\{\begin{matrix} 0 \text{\qquad(für n=0 und gerade n)} & \\ 1 \text{\qquad(für ungerade n)} & \end{matrix}\right.[/mm]

Nein. Für $n>0$ kommt ist die Summe immer 0.

>  
> dann hatte ich noch die überlegung
>
> [mm]\sum_{k=0}^{n}(-1)^k{n \choose k}[/mm] = [mm]\sum_{k=0}^{n}{n \choose 2k}[/mm]
> - [mm]\sum_{k=0}^{n}{n \choose 2k+1}[/mm]
>
> wie ich jetzt aber zeigen soll das meine vermutung für
> alle geraden bzw ungeraden n gilt da stehe ich momentan
> an...

Tipp: [mm] \sum_{k=0}^{n}(-1)^k{n \choose k} = \sum_{k=0}^{n}(-1)^k(+1)^{n-k}{n \choose k}[/mm] .

Viele Grüße
   Rainer


Bezug
                
Bezug
summe -1^k(n über k): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:44 Mi 22.06.2011
Autor: Marcel

Hallo,

> Hallo!
>  
> > Berechnen Sie [mm]\sum_{k=0}^{n}(-1)^k{n \choose k}.[/mm]
>  >  
> Vergessen
> > Sie nicht den Fall k=0 gesondert zu behandeln.

der Hinweis war sicher, den Fall
[mm] $$\red{n=0}$$ [/mm]
gesondert zu betrachten. Dies besagt, wenn man Rainers Hinweis richtig zu verstehen weiß, dass man beachten soll, dass
[mm] $$0^n=\begin{cases} 0, & \mbox{für natürliches } n > 0 \\ 1, & \mbox{für } n =0\end{cases}\,.$$ [/mm]

Gruß,
Marcel

Bezug
                
Bezug
summe -1^k(n über k): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:37 So 26.06.2011
Autor: elmanuel

meld mich erst jetzt weil ich paar tage auf urlaub war :)

ja danke vielmals leute! ihr habt beide recht ! mithilfe des binomischen lehrsatzes komme ich auf die gleiche lösung!

allerdings irritiert mich noch das, wenn ich in meinen TI-82 [mm] 0^0 [/mm] eingebe ein ERROR dabei rauskommt... ist [mm] 0^0 [/mm] als 1 definiert? wenn ja, wieso wurde das dann nicht in die standard-rechner einprogrammiert?

Bezug
                        
Bezug
summe -1^k(n über k): Antwort
Status: (Antwort) fertig Status 
Datum: 22:44 So 26.06.2011
Autor: kamaleonti

Guten Abend elmanuel,

> allerdings irritiert mich noch das, wenn ich in meinen
> TI-82 [mm]0^0[/mm] eingebe ein ERROR dabei rauskommt... ist [mm]0^0[/mm] als 1 definiert? wenn ja, wieso wurde das dann nicht in die
> standard-rechner einprogrammiert?

Man definiert für [mm] a\neq0 [/mm] den Ausdruck [mm] a^0:=1 [/mm] und für [mm] k\neq0 [/mm] den Ausdruck [mm] 0^k:=0. [/mm]
Bei [mm] 0^0 [/mm] wäre die Frage, welche von den beiden obigen Definitionen 'sinnvoller' ist, daher lässt man den Ausdruck [mm] 0^0 [/mm] üblicherweise undefiniert.

Leider gibt es immer wieder ein paar Taschenrechnermodelle, bei denen das nicht so ist. Deiner erkennt das schon richtig und gibt folgerichtig einen Error aus.

LG

Bezug
                                
Bezug
summe -1^k(n über k): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:54 So 26.06.2011
Autor: elmanuel

ok .. dann geh ich mal [mm] 0^0 [/mm] als ungelöstes konventionsproblem aus dem weg und rechne einfach für n=0 durch einsetzen aus (ergebnis 1), die restlichen n berechne ich durch den binomischen lehrsatz und sage [mm] 0^n=0 [/mm] für n>0

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]