www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichensupremum abschätzen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - supremum abschätzen
supremum abschätzen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

supremum abschätzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:31 Mo 06.04.2009
Autor: Rutzel

Hallo,

ich bin gerade am Grübeln:

Seien A und B reelle [mm] n\times [/mm] n Matrizen und v [mm] \in \IR^n [/mm]

darf ich dann wie folgt abschätzen?

[mm] sup(||Av||+||Bv||)\le [/mm] sup(||Av||)+sup(||Bv||)

Gefühlsmäßig würde ich auf jeden Fall ja sagen, da ich die Menge über welcher ich das Supremum nehme ja vergrößere.

Wie kann an das richtig begründen?

Gruß,
Rutzel

        
Bezug
supremum abschätzen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:14 Mo 06.04.2009
Autor: Marcel

Hallo Rutzel,

> Hallo,
>  
> ich bin gerade am Grübeln:
>  
> Seien A und B reelle [mm]n\times[/mm] n Matrizen und v [mm]\in \IR^n[/mm]
>  
> darf ich dann wie folgt abschätzen?
>  
> [mm]sup(||Av||+||Bv||)\le[/mm] sup(||Av||)+sup(||Bv||)
>  
> Gefühlsmäßig würde ich auf jeden Fall ja sagen, da ich die
> Menge über welcher ich das Supremum nehme ja vergrößere.

ganz einfach: ist [mm] $s_1:=\sup \|Av\|$ [/mm] und [mm] $s_2:=\sup \|Bw\|$, [/mm] so gilt nach Definition des Supremums:
[mm] $$s_1+s_2 \ge (\|Av\|+\|Bw\|)$$ [/mm]
für alle betrachteten Paare [mm] $(v,w)\,$ [/mm] des [mm] $\IR^n \times \IR^n\,.$ [/mm]

Insbesondere gilt also (setze [mm] $w=v\,$) [/mm]
[mm] $$\|Av\|+\|Bv\| \le s_1+s_2$$ [/mm]
für alle betrachteten Vektoren $v [mm] \in \IR^n$ [/mm] und damit auch
[mm] $$\sup \{\|Av\|+\|Bv\|\} \le \sup \{s_1+s_2\}=s_1+s_2\,.$$ [/mm]

P.S.:
Ich habe für alle betrachteten $v [mm] \in \IR^n$ [/mm] etc. geschrieben, weil ich nicht glaube, dass bei Dir [mm] $\sup \|Av\|=\sup \{\|Av\|:\;v \in \IR^n\}$ [/mm] meint, sondern ich vermute:
[mm] $\sup \|Av\|:=\sup \{\|Av\|:\;v \in \Omega\}$ [/mm] für eine gewisse (beschränkte?) Menge [mm] $\Omega \subset \IR^n\,.$ [/mm]

Wenn das so stimmt, dann solltest Du Aussagen wie "für alle betrachteten Paare $(v,w) [mm] \in \IR^n \times \IR^n$..." [/mm] dann interpretieren als:
"für alle $v,w [mm] \in \Omega$..." [/mm] (oder: "für alle Paare $(v,w) [mm] \in \Omega \times \Omega$") [/mm]

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]