www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigessurjektiv
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Sonstiges" - surjektiv
surjektiv < Sonstiges < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

surjektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:41 Fr 09.11.2007
Autor: lenz

Aufgabe
seien f,g zwei [mm] abbildungen,f:L\to [/mm] M [mm] ,g:M\to [/mm] N
ist [mm] g\circ [/mm] f surjektiv so ist f surjektiv

hallo
meine frage wäre:muß g nicht ganz M abbilden,also f surjektiv voraussetzung
für [mm] g\circ [/mm] f ?

gruß lenz

ich habe diese frage in keinem forum auf einer seite gestellt

        
Bezug
surjektiv: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 23:03 Fr 09.11.2007
Autor: marcsn

Nein das stimmt so nicht. Die Abbildung g ist surjektiv wenn jedes Bild von g mindestens ein Urbild hat.

Hast du das vielleicht mit injektiv verwechselt ? Eine Abbildung ist injektiv wenn jeder Funktionswert ein anderes Bild hat.

Bezug
                
Bezug
surjektiv: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 23:16 Fr 09.11.2007
Autor: lenz

schon mal danke
habs aber nicht so ganz verstanden
also normalerweise bildet eine funktion von M nach N ja ganz M ab.
wenn ganz N getroffen wird ist sie surjektiv,wenn [mm] f'(x)=f(y)\Rightarrow [/mm] x=y
ist sie injektiv soweit ich weiß.
bei [mm] g\circ [/mm] f bildet g ja nur elemente ab die von f abgebildet wurden.
meine frage ist eigentlich kann es im definitionsbereich von g elemente geben
die von f nicht getroffen werden also garnicht abgebildet werden?

Bezug
                
Bezug
surjektiv: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 12:49 Sa 10.11.2007
Autor: angela.h.b.


> Die Abbildung g ist surjektiv
> wenn jedes Bild von g mindestens ein Urbild hat.

Hallo,

das ist nicht richtig.

Ein jedes Bild von g hat mindestens ein Urbild. Sonst wär's ja kein Bild...

Was Du meinst, ist sicher folgendes: ein jedes Element des Wertebereiches hat ein Urbild in der Definitionsmenge.
Es wird also auf jedes Element des Wertebereiches ein Element des Definitionsbereiches abgebildet.

Gruß v. Angela

Bezug
        
Bezug
surjektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 12:57 Sa 10.11.2007
Autor: angela.h.b.


> seien f,g zwei [mm]abbildungen,f:L\to[/mm] M [mm],g:M\to[/mm] N
> ist [mm]g\circ[/mm] f surjektiv so ist f surjektiv
>  hallo
>  meine frage wäre:muß g nicht ganz M abbilden,also f
> surjektiv voraussetzung
>  für [mm]g\circ[/mm] f ?

Hallo,

Du sollst zeigen:

[mm] g\circ [/mm] f  surjektiv  ==> f ist surjektiv.

Das bedeutet: wenn [mm] g\circ [/mm] f surjektiv ist, kann es gar nicht anders sein, als daß f surjektiv ist.

Du hast nun folgendes richtig erkannt:

schon wenn man [mm] g\circ [/mm]  f  definieren möchte - egal ob surjektiv, injektiv, nichts von beiden oder alles - , geht das nur, wenn f surjektiv ist. Das ist völlig richtig.

Die zu zeigende Behauptung stimmt also sogar, wenn man auf die Surjektivität v. [mm] g\circ [/mm] f  verzichtet.

Gruß v. Angela

Bezug
                
Bezug
surjektiv: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:41 Sa 10.11.2007
Autor: lenz

hab dank
gruß lenz

Bezug
                
Bezug
surjektiv: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:27 Mo 12.11.2007
Autor: lenz

hallo
hab in der vorlesung(oder ü-gruppe)gehört es sei doch möglich
daß [mm] f\circ [/mm] g mit f nicht surjektiv(falls es jemanden interressiert)
gruß lenz

Bezug
                        
Bezug
surjektiv: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:49 Mo 12.11.2007
Autor: angela.h.b.


> hallo
> hab in der vorlesung(oder ü-gruppe)gehört es sei doch
> möglich
>  daß [mm]f\circ[/mm] g mit f nicht surjektiv(falls es jemanden
> interressiert)
>  gruß lenz

Hallo,

aber Deine Aufgabe hier handelte von [mm] g\circ [/mm] f.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]