www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Abbildungensurjektiv
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Abbildungen" - surjektiv
surjektiv < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

surjektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:29 Mo 13.07.2009
Autor: Fawkes

Aufgabe
Sei A eine mxn-Matrix über K. Sei [mm] f_A [/mm] : [mm] V_n [/mm] (K) [mm] \to V_m [/mm] (K), v [mm] \mapsto [/mm] Av die zugehörige lineare Abbildung. Welche der folgenden Aussagen sind dazu äquivalent, dass [mm] f_A [/mm] surjektiv ist:
a) [mm] f_A [/mm] hat von {0} verschiedenen Rang.
b) der Rang von [mm] f_A [/mm] ist n.
c) jedes GLS mit Koeffmatrix A hat genau eine Lösung.
d) jedes GLS mit Koeffmatrix A hat höchstens eine Lösung.
e) jedes GLS mit Koeffmatrix A hat mindestens eine Lösung.

Hallo,
also bei dieser Multiple Choice Aufgabe hab ich a) und e) angekreuzt. Ist das richtig? Wie immer dank vorweg :)
Gruß Fawkes


        
Bezug
surjektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 22:43 Mo 13.07.2009
Autor: angela.h.b.


> Sei A eine mxn-Matrix über K. Sei [mm]f_A[/mm] : [mm]V_n[/mm] (K) [mm]\to V_m[/mm]
> (K), v [mm]\mapsto[/mm] Av die zugehörige lineare Abbildung. Welche
> der folgenden Aussagen sind dazu äquivalent, dass [mm]f_A[/mm]
> surjektiv ist:
>  a) [mm]f_A[/mm] hat von {0} verschiedenen Rang.
>  b) der Rang von [mm]f_A[/mm] ist n.
>  c) jedes GLS mit Koeffmatrix A hat genau eine Lösung.
>  d) jedes GLS mit Koeffmatrix A hat höchstens eine
> Lösung.
>  e) jedes GLS mit Koeffmatrix A hat mindestens eine
> Lösung.
>  Hallo,
> also bei dieser Multiple Choice Aufgabe hab ich a) und e)
> angekreuzt. Ist das richtig? Wie immer dank vorweg :)
> Gruß Fawkes


Hallo,

a) stimmt nicht.

Gruß v. Angela


Bezug
        
Bezug
surjektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:49 Sa 18.07.2009
Autor: Fawkes

Aufgabe
Ergänzung:
f) m [mm] \ge [/mm] n
g) [mm] dim(ker(f_A))=m-n [/mm]
h) [mm] dim(ker(f_A))=n-m [/mm]

Hallo,
also zu der Ergänzung würd ich sagen h) ist richtig?
Dank wie immer vorweg :)
Gruß fawkes

Bezug
                
Bezug
surjektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 17:03 Sa 18.07.2009
Autor: angela.h.b.


> Ergänzung:
>  f) m [mm]\ge[/mm] n
>  g) [mm]dim(ker(f_A))=m-n[/mm]
>  h) [mm]dim(ker(f_A))=n-m[/mm]
>  Hallo,
>  also zu der Ergänzung würd ich sagen h) ist richtig?

Hallo,

ja.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]