www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebrasurjektiv/injektiv
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - surjektiv/injektiv
surjektiv/injektiv < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

surjektiv/injektiv: Korrektur
Status: (Frage) beantwortet Status 
Datum: 10:02 So 30.10.2005
Autor: Cutie

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hi, ich habe eine Frage,

Die Abbildung f:  [mm] \IZ \to \IZ [/mm] x  [mm] \IZ [/mm] sei definiert durch f(n) = (n hoch 2, (n+1) hoch 2) für alle n  [mm] \in \IZ. [/mm]
Man beweise oder wiederlege:
a) f ist injektiv.
b) f ist surjektiv.

Ist es nicht injektiv, da man es kürzen kann und man zum Schluss n1 = n2 rausbekommt. Könnte mir jemand vielleicht den Rechenaufschritt aufschrieben. Ich weiß nähmlich nicht wie ich es aufschreiben soll.

Ich danke scchonmal im voraus.

        
Bezug
surjektiv/injektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 12:17 So 30.10.2005
Autor: Mathe_Alex

Ich würde auch sagen, dass f injektiv ist, allerdings würde ich es andern begründen. Was meinst Du bei deiner Begründung mit kürzen?

Ich würde es so machen:

Nehmen wir zuerst an, dass f surjektiv sei:
Wenn f  surjektiv ist, so muss jedes Zahlenpaar durch die gegebene Vorschrift abgebildet werden können:
Sei [mm] (z_{1},z_{2}):= [/mm] (0,0) Um Dieses Paar mit [mm] f(n)=(n^{2},(n+1)^{2}) [/mm] darstellen zu können, muss n=0 sein. n darf gleichzeitig aber nicht 0 sein, da [mm] (n+1)^{2} [/mm] für =0 nicht 0 wird.
Also kann ich das Zahlenpaar (0,0) nicht darstellen, womit die Funktion nicht mehr surjektiv sein kann, da nun nicht mehr zu jedem f(n) mindestens ein Urbild existiert.
Beim Beweis der Injektivität bin ich mir überhaupt nicht mehr sicher, ob man es so machen kann, meine erste LA Übung ist erst am Mittwoch :)

Also:
Nehmen wir an, das Zahlenpaar [mm] (z_{1},z_{2}) [/mm] sei auf zwei verschiedene Arten darstellbar:
[mm] (n_{1}^{2},(n_{1}+1)^{2})=(z_{1},z_{2}) [/mm]
[mm] (n_{2}^{2},(n_{2}+1)^{2})=(z_{1},z_{2}), [/mm] mit [mm] n_{1} \not=n_{2} [/mm]

Subtrahiere ich beide Gleichungen komme ich zu:
[mm] (n_{1}^{2}-n_{2}^{2},(n_{1}+1)^{2}-n_{2}+1)^{2})=(0,0) [/mm]

Diese Gleichung ist nur erfüllt, wenn [mm] n_{1}=n_{2}, [/mm] was ein Widerspruch zur Voraussetzung ist. Also gibt es zu jedem [mm] (z_{1},z{2}) [/mm] höchstens ein Urbild, sodass f injektiv sein muss.

Bitte um Korrktur meiner Lösung :)

Gruß
Alex

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]